机器学习的数学基础(二、线性代数)(阅读笔记------3.矩阵的初等变换与线性方程组)

机器学习的数学基础(二、线性代数)(阅读笔记------3.矩阵的初等变换与线性方程组)

机器学习的数学基础-(二、线性代数)
原文链接:https://zhuanlan.zhihu.com/p/36584206

推荐 同济大学数学系编写的《工程数学------线性代数》第六版
出版社:高等教育出版社 出版时间:2014年06月
稳居当当教科书畅销书单前列。

3. 矩阵的初等变换与线性方程组

3.1. 矩阵的初等变换

把方程组的三种同解变换移植到矩阵上,就得到矩阵的三种初等行变换。
下面三种变换称为矩阵的初等行变换:
( i ) 对 换 两 行 ( 对 换 i , j 两 行 , 记 作 r i ↔ r j ) ; ( i i ) 以 数 k ≠ 0 乘 某 一 行 中 的 所 有 元 ( 第 i 行 乘 k , 记 作 r i × k ) ; ( i i i ) 把 某 一 行 所 有 元 素 的 k 倍 加 到 另 一 行 对 应 的 元 上 去 ( 第 j 行 的 k 倍 加 到 第 i 行 上 , 记 作 r i + k r j ) ; \begin{aligned} &(i) 对换两行(对换i,j两行,记作r_i \leftrightarrow r_j); \\ &(ii) 以数k\neq 0乘某一行中的所有元(第i行乘k,记作r_i \times k);\\ &(iii) 把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r_i+kr_j); \end {aligned} (i)ijrirj(ii)k=0ikri×k(iii)kjkiri+krj

把定义中的“行”换成“列”,即得到矩阵的初等列变换的定义(所用记号是把“r”换成“c”)。
矩阵的初等行变换和初等列变换统称初等变换
如果矩阵 A \boldsymbol A A经有限次初等行变换变成矩阵 B \boldsymbol B B,就称矩阵 A \boldsymbol A A B \boldsymbol B B行等价,记作 A ∼ r B \boldsymbol A \overset{r}{\sim } \boldsymbol B ArB
如果矩阵 A \boldsymbol A A经有限次初等列变换变成矩阵 B \boldsymbol B B,就称矩阵 A \boldsymbol A A B \boldsymbol B B列等价,记作 A ∼ c B \boldsymbol A \overset{c}{\sim } \boldsymbol B AcB
如果矩阵 A \boldsymbol A A经有限次初等变换变成矩阵 B \boldsymbol B B,就称矩阵 A \boldsymbol A A B \boldsymbol B B等价,记作 A ∼ B \boldsymbol A \overset{}{\sim } \boldsymbol B AB

非零矩阵若满足
(i)非零行在零行的上面;
(ii)非零行的首非零元素所在列在上一行(如果存在的话)的首非零元素所在列的右面,
则称此矩阵为行阶梯形矩阵
进一步,若 A \boldsymbol A A是行阶梯形矩阵,并且还满足:
(i)非零行的首非零元为1;
(ii)首非零元所在列的其他元均为0,
则称 A \boldsymbol A A行最简形矩阵
由行最简形矩阵可以写出方程组的解;反之,由方程组的解也可以写出最简形矩阵。
一个矩阵的行最简形矩阵是唯一确定的。
对于行最简形矩阵再施以初等列变换,可变成一种形状更简单的矩阵,称为标准形,其特点是:左上角是一个单位阵,其余元全为0。
由单位阵经过一次初等变换得到的矩阵称为初等矩阵
性质1 A \boldsymbol A A是一个 m × n m\times n m×n矩阵,
A \boldsymbol A A施行一次初等行变换,相当于在 A \boldsymbol A A的左边乘相应的m阶初等矩阵;
A \boldsymbol A A施行一次初等列变换,相当于在 A \boldsymbol A A的右边乘相应的m阶初等矩阵。
性质2 方阵对 A \boldsymbol A A可逆的充分必要条件是存在有限个初等矩阵 P 1 , P 2 , . . . , P l \boldsymbol P_1,\boldsymbol P_2,...,\boldsymbol P_l P1,P2,...,Pl,使 A = P 1 P 2 . . . P l \boldsymbol A=\boldsymbol P_1\boldsymbol P_2...\boldsymbol P_l A=P1P2...Pl
推论 方阵 A \boldsymbol A A可逆的充分必要条件是 A ∼ r E \boldsymbol A\overset{r}{\sim} \boldsymbol E ArE
定理1 A \boldsymbol A A B \boldsymbol B B m × n m\times n m×n矩阵,那么
(i) A ∼ r B \boldsymbol A\overset{r}{\sim} \boldsymbol B ArB的充分必要条件是存在m阶可逆矩阵 P \boldsymbol P P,使 P A = B \boldsymbol P \boldsymbol A = \boldsymbol B PA=B
(ii) A ∼ c B \boldsymbol A\overset{c}{\sim} \boldsymbol B AcB的充分必要条件是存在n阶可逆矩阵 Q \boldsymbol Q Q,使 A Q = B \boldsymbol A \boldsymbol Q = \boldsymbol B AQ=B
(iii) A ∼ B \boldsymbol A\overset{}{\sim} \boldsymbol B AB的充分必要条件是存在m阶可逆矩阵 P \boldsymbol P P及n阶可逆矩阵 Q \boldsymbol Q Q,使 P A Q = B \boldsymbol P \boldsymbol A \boldsymbol Q = \boldsymbol B PAQ=B
如果 A ∼ r B \boldsymbol A\overset{r}{\sim} \boldsymbol B ArB,即 A \boldsymbol A A经一系列初等行变换变为 B \boldsymbol B B,则有可逆矩阵 P \boldsymbol P P,使 P A = B \boldsymbol P \boldsymbol A=\boldsymbol B PA=B
那么如何去求出这个可逆矩阵 P \boldsymbol P P
由于 P A = B ⇔ { P A = B P E = P ⇔ P ( A , E ) = ( B , P ) ⇔ ( A , E ) ∼ r ( B , P ) \boldsymbol P\boldsymbol A=\boldsymbol B\Leftrightarrow \left\{ \begin{matrix} \boldsymbol P \boldsymbol A=\boldsymbol B \\ \boldsymbol P\boldsymbol E=\boldsymbol P \end{matrix} \right. \Leftrightarrow \boldsymbol P(\boldsymbol A,\boldsymbol E)=(\boldsymbol B,\boldsymbol P)\Leftrightarrow( \boldsymbol A, \boldsymbol E)\overset{r}{\sim} (\boldsymbol B, \boldsymbol P) PA=B{PA=BPE=PP(AE=(BPAErBP,因此,如果对矩阵 ( A , E ) ( \boldsymbol A, \boldsymbol E) AE作初等行变换,那么,当把 A \boldsymbol A A变为 B \boldsymbol B B时, E \boldsymbol E E就变成了 P \boldsymbol P P。于是就得到所球的可逆矩阵 P \boldsymbol P P
因此我们可以得到求解方程 A X = B \boldsymbol A\boldsymbol X=\boldsymbol B AX=B的一个新方法。这个方法就是把方程的增广矩 ( A , B ) (\boldsymbol A,\boldsymbol B) (A,B)阵化为行最简形矩阵。
总结求解线性方程组 A X = b \boldsymbol A\boldsymbol X=\boldsymbol b AX=b的三种方法
方法一:采用逆矩阵求解;
方法二:采用克拉默法则求解;
方法一:采用本节介绍的新方法求解,即把增广矩阵 ( A , b ) (\boldsymbol A,\boldsymbol b) (A,b)化为行最简形矩阵,其最后一列就是解向量。

2.2 矩阵的秩

引理 设 A ∼ r B \boldsymbol A\overset{r}{\sim} \boldsymbol B ArB,则与中非零子式的最高阶数相等。
定义 设在矩阵 A \boldsymbol A A中有一个不等于0的r阶子式 D \boldsymbol D D,且所有r+1阶子式(如果存在的话)全等于0,那么称 D \boldsymbol D D为矩阵的最高阶非零子式,数r称为矩阵 A \boldsymbol A A的秩,记作 R ( A ) R(\boldsymbol A) R(A)。并规定零矩阵的秩等于0。
可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数。因此,可逆矩阵又称作满秩矩阵,不可逆矩阵(奇异矩阵)又称作降秩矩阵。
定理2 若 A ∼ B \boldsymbol A\overset{}{\sim} \boldsymbol B AB,则 R ( A ) = R ( B ) R(\boldsymbol A)=R(\boldsymbol B) R(A)=R(B)
推论 若可逆矩阵 P 、 Q \boldsymbol P、\boldsymbol Q PQ使 P A Q = B \boldsymbol P\boldsymbol A\boldsymbol Q= \boldsymbol B PAQ=B,则 R ( A ) = R ( B ) R(\boldsymbol A)=R(\boldsymbol B) R(A)=R(B)
矩阵秩有如下性质
( 1 ) 0 ≤ R ( A m × n ) ≤ m i n { m , n } ; ( 2 ) R ( A T ) = R ( A ) ; ( 3 ) 若 A ∼ B , 则 R ( A ) = R ( B ) ; ( 4 ) 若 P 、 Q 可 逆 , 则 R ( P A Q ) = R ( B ) ; ( 5 ) m a x { R ( A ) , R ( B ) } ≤ R ( A , B ) ≤ R ( A ) + R ( B ) ; ( 6 ) R ( A + B ) ≤ R ( A ) + R ( B ) ; ( 7 ) R ( A B ) ≤ m i n { R ( A ) , R ( B ) } ; ( 8 ) 若 A m × n B n × l = O , 则 R ( A ) + R ( B ) ≤ n ; \begin{aligned} &(1) 0\leq R(\boldsymbol A_{m\times n})\leq min\{m,n\}; \\ &(2) R(\boldsymbol A^T)=R(\boldsymbol A) ;\\ &(3)若\boldsymbol A\overset{}{\sim} \boldsymbol B,则 R(\boldsymbol A)=R(\boldsymbol B) ;\\ &(4)若\boldsymbol P、\boldsymbol Q可逆,则 R(\boldsymbol {PAQ})=R(\boldsymbol B) ;\\ &(5) max\{ R(\boldsymbol A),R(\boldsymbol B)\} \leq R(\boldsymbol A,\boldsymbol B)\leq R(\boldsymbol A)+R(\boldsymbol B) ;\\ &(6) R(\boldsymbol A+\boldsymbol B)\leq R(\boldsymbol A)+R(\boldsymbol B) ;\\ &(7) R(\boldsymbol A \boldsymbol B) \leq min\{R(\boldsymbol A),R(\boldsymbol B)\} ;\\ &(8) 若\boldsymbol A_{m\times n}\boldsymbol B_{n\times l} =\boldsymbol O,则R(\boldsymbol A)+R(\boldsymbol B) \leq n ;\\ \end {aligned} (1)0R(Am×n)min{m,n}(2)R(AT)=R(A)(3)ABR(A)=R(B)(4)PQR(PAQ)=R(B)(5)max{R(A),R(B)}R(A,B)R(A)+R(B)(6)R(A+B)R(A)+R(B)(7)R(AB)min{R(A),R(B)}(8)Am×nBn×l=OR(A)+R(B)n

另外若 A m × n B n × l = C \boldsymbol A_{m \times n}\boldsymbol B_{n \times l}=\boldsymbol C Am×nBn×l=C,且 R ( A ) = n R(\boldsymbol A)=n R(A)=n,则 R ( B ) = R ( C ) R(\boldsymbol B)=R(\boldsymbol C) R(B)=R(C)
如果矩阵 A \boldsymbol A A的秩等于它的列数,这样的矩阵称为列满秩矩阵。
A B = O \boldsymbol A \boldsymbol B=\boldsymbol O AB=O,若 A \boldsymbol A A 为列满秩矩阵,则 R ( B ) = 0 , 即 B = O R(\boldsymbol B)=0,即\boldsymbol B=\boldsymbol O R(B)=0B=O。这一结论通常称为矩阵乘法的消去律

3.3. 线性方程组的解

定理3 n元线性方程组 A x = b \boldsymbol A \boldsymbol x=\boldsymbol b Ax=b
(i)无解的充分必要条件是 R ( A ) ≤ R ( A , b ) R(\boldsymbol A) \leq R(\boldsymbol A, \boldsymbol b) R(A)R(A,b)
(ii)有唯一解的充分必要条件是 R ( A ) = R ( A , b ) = n R(\boldsymbol A) =R(\boldsymbol A, \boldsymbol b)=n R(A)=R(A,b)=n
(i)有无限多解的充分必要条件是 R ( A ) = R ( A , b ) < n R(\boldsymbol A) =R(\boldsymbol A, \boldsymbol b) < n R(A)=R(A,b)<n
定理4 n元齐次现行方程组 A x = 0 \boldsymbol A \boldsymbol x=0 Ax=0有非零解的充分必要条件是 R ( A ) ≤ n R(\boldsymbol A) \leq n R(A)n
定理5 线性方程组 A x = b \boldsymbol A \boldsymbol x=\boldsymbol b Ax=b有解的充分必要条件是 R ( A ) = R ( A , b ) R(\boldsymbol A) =R(\boldsymbol A,\boldsymbol b) R(A)=R(Ab)
定理6 矩阵方程 A x = B \boldsymbol A \boldsymbol x=\boldsymbol B Ax=B有解的充分必要条件是 R ( A ) = R ( A , B ) R(\boldsymbol A) =R(\boldsymbol A,\boldsymbol B) R(A)=R(AB)
定理7 A B = C \boldsymbol A \boldsymbol B=\boldsymbol C AB=C,则 R ( C ) ≤ m i n { R ( A ) , R ( B ) } R(\boldsymbol C) \leq min\{R(\boldsymbol A),R(\boldsymbol B)\} R(C)min{R(A)R(B)}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值