【线性代数】矩阵的初等变换与线性方程组

矩阵的初等变换

一、初等变换

1. 初等变换的定义

下面三种变换称为矩阵的初等行变换

  • 对调两行(对调 i , j i,j i,j两行,记作 r i ↔ r j r_{i}\leftrightarrow r_j rirj
  • 以数 ( k ≠ 0 ) (k\ne0) (k=0)乘某一行中的所有元素(第 i i i行乘 k k k,记作 r i × k r_{i}\times k ri×k
  • 把某一行所有元素的 k k k倍加到另一行对应的元素上去(第 j j j行的 k k k倍加到第 i i i行,记作 r i + k r j r_{i}+kr_{j} ri+krj

把定义中的“行”换成“列”,即得矩阵的初等列变换的定义(所用记号是把“ r r r“换成” c c c“)。矩阵的初等行变换与初等列变换,统称初等变换

2. 行最简形矩阵的定义

非零行的第一个非零元为 1 1 1,且这些非零元所在的列的其他元素都为 0 0 0

例如: ( 1 0 0 2 0 1 0 3 0 0 1 0 0 0 0 0 ) \begin{pmatrix}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix} 1000010000102300

  • 非零行的第一个非零元为 1 1 1:第一、二、三行的第一个非零元都是 1 1 1
  • 且这些非零元所在的列的其他元素都为 0 0 0:如第二行的第一个非零元,即 1 1 1,其所在的列其他元素都为 0 0 0

二、矩阵等价

1. 矩阵等价的定义

如果矩阵 A A A经过有限次初等行变换变成矩阵 B B B,就称矩阵 A A A与矩阵 B B B行等价,记作 A ∼ r B A\overset{r}{\sim} B ArB;如果矩阵A经过有限次初等列变换变成矩阵 B B B,就称矩阵 A A A与矩阵 B B B列等价,记作 A ∼ c B A\overset{c}{\sim} B AcB;如果A经过有限次初等变换变成矩阵 B B B,就称矩阵 A A A与矩阵 B B B等价,记作 A ∼ B A \sim B AB。( A , B A,B A,B是同型矩阵)

2. 矩阵等价的性质

矩阵之间的等价关系具有以下性质

  • 反身性: A ∼ A A\sim A AA
  • 对称性:若 A ∼ B A\sim B AB,则 B ∼ A B\sim A BA
  • 传递性:若 A ∼ B , B ∼ C A\sim B,B\sim C AB,BC,则 A ∼ C A\sim C AC

3. 矩阵等价的定理

A A A B B B m × n m\times n m×n矩阵,那么:

  • A ∼ r B A\overset{r}{\sim} B ArB的充分必要条件是存在 m m m阶可逆矩阵 P P P,使 P A = B PA=B PA=B
  • A ∼ c B A\overset{c}{\sim} B AcB的充分必要条件是存在 n n n阶可逆矩阵 Q Q Q,使 A Q = B AQ=B AQ=B
  • A ∼ B A\sim B AB的充分必要条件是存在 m m m阶可逆矩阵及 n n n阶可逆矩阵 Q Q Q,使 P A Q = B PAQ=B PAQ=B

三、初等矩阵

1. 初等矩阵的定义

由单位阵 E E E经过一次初等变换得到的矩阵称为初等矩阵

2. 三种初等矩阵

  • 把单位阵中的第 i , j i,j i,j两行(或第 i , j i,j i,j两列)对调,得初等矩阵
  • 以数 k ≠ 0 k\ne0 k=0乘单位阵的第 i i i行(或第 i i i列),得初等矩阵
  • k k k E E E的第 j j j行加到第 i i i行上或以 k k k E E E的第 i i i列加到第 j j j列上,得初等矩阵

3. 初等矩阵的性质

  • A A A是一个 m × n m\times n m×n矩阵,对 A A A施行一次初等行变换,相当于在 A A A的左边乘以相应的 m m m阶初等矩阵;对 A A A施行一次初等列变换,相当于在 A A A的右边乘以相应的 n n n阶初等矩阵
  • 方阵 A A A可逆的充分必要条件是,存在有限个初等矩阵 P 1 , P 2 , ⋯   , P l P_{1},P_{2},\cdots,P_{l} P1,P2,,Pl,使 A = P 1 P 2 ⋯ P l A=P_{1}P_{2}\cdots P_{l} A=P1P2Pl

例1:设 A = ( 0 − 2 1 3 0 − 2 − 2 3 0 ) A=\begin{pmatrix}0 & -2 & 1 \\ 3 & 0 & -2 \\ -2 & 3 & 0\end{pmatrix} A= 032203120 ,证明 A A A可逆,并求 A − 1 A^{-1} A1
思路:构建矩阵 ( A ∣ E ) (A|E) (AE),将 A A A的部分通过初等行变换变成 E E E,同时 E E E变成 A − 1 A^{-1} A1
( A ∣ E ) = ( 0 − 2 1 1 0 0 3 0 − 2 0 1 0 − 2 3 0 0 0 1 ) E 的部分变成上三角矩阵 → ( 3 0 − 2 0 1 0 0 − 2 1 1 0 0 0 0 1 9 4 6 ) 将非主对角线上的数变成 0 ( 3 0 0 18 9 12 0 − 2 0 − 8 − 4 − 6 0 0 1 9 4 6 ) 主对角线上的值变为 1 ( 1 0 0 6 3 4 0 1 0 4 2 3 0 0 1 9 4 6 ) = ( E ∣ A − 1 ) \begin{aligned}(A|E)&=\begin{pmatrix}0 & -2 & 1 & 1 & 0 & 0 \\ 3 & 0 & -2 & 0 & 1 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1\end{pmatrix}\\&E \text{的部分变成上三角矩阵}\\&\rightarrow \begin{pmatrix}3 & 0 & -2 & 0 & 1 & 0 \\ 0 & -2 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 9 & 4 & 6\end{pmatrix}\\&\text{将非主对角线上的数变成}0\\ &\begin{pmatrix}3 & 0 & 0 & 18 & 9 & 12 \\ 0 & -2 & 0 & -8 & -4 & -6 \\ 0 & 0 & 1 & 9 & 4 & 6\end{pmatrix}\\&\text{主对角线上的值变为}1\\&\begin{pmatrix}1 & 0 & 0 & 6 & 3 & 4 \\ 0 & 1 & 0 & 4 & 2 & 3 \\ 0 & 0 & 1 & 9 & 4 & 6\end{pmatrix}\\&=(E|A^{-1})\end{aligned} (AE)= 032203120100010001 E的部分变成上三角矩阵 300020211

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值