元胞自动机模型
元胞自动机理论
元胞自动机(Cellular Automata,CA)是一种时空离散的局部动力学模型,是研究复杂系统的一种典型方法,特别适合用于空间复杂系统的时空动态模拟研究。
元胞自动机不是由严格定义的物理方程或函数确定,而是用一系列模型构造的规则构成。凡是满足这些规则的模型都可以算作是元胞自动机模型。因此,元胞自动机是一类模型的总称,或者说是一个方法框架。
在CA模型中,散布在规则格网 (Lattice Grid)中的每一元胞(Cell)取有限的离散状态,遵循同样的作用规则,依据确定的局部规则作同步更新。大量元胞通过简单的相互作用而构成动态系统的演化。
CA模型的特点:时间、空间、状态都离散,每个变量只取有限多个状态,且其状态改变的规则在时间和空间上都是局部的。
元胞自动机的构成
元胞自动机最基本的组成:元胞、元胞空间、邻居及规则四部分。
简单讲,元胞自动机可以视为由一个元胞空间和定义于该空间的变换函数所组成。
元胞自动机的构成
-
元胞
元胞自动机的最基本组成部分。它分布在离散的一维、二维或多维欧几里德空间的晶格点上。
-
状态
状态可以是{0,1}的二进制形式,或是{s0,s1,s2,…,si}整数形式的离散集。严格意义上,元胞只能有一个状态变量,但在实际应用中,往往将其进行扩展。
-
元胞空间
元胞所分布在的空间网点集合就是元胞空间
-
元胞空间的几何划分
任意维数的欧几里德空间规则划分。对于一维元胞自动机,元胞空间划分只有一种。而高维的元胞自动机,元胞空间的划分则可能有多种形式。对于常见的二维自动机,元胞空间通常可按三角形、四边形或六边形三种网格排列。
-
三角网格
拥有较少的邻居数目,这在某些时候很有用。缺点是计算机的表达与显示不方便。
-
四边形网格
直观简单,特别适合于计算机环境下进行表达显示。
-
六边形网格
能较好的模拟各向同性的现象,因此,模型能更加自然而真实。其缺点同正三角网格一样,在表达显示上较为困难和复杂。
-
-
边界条件
理论上,元胞空间在各个维向上是无限延展的。实际应用过程中,无法在计算机上实现这一理想条件。
-
构形
在某个时刻,在元胞空间上所有元胞状态的空间分布组合。在数学上,它通常可以表示为一个多维的整数矩阵。
邻居、元胞和元胞空间只表示了系统的静态成分,为了将动态引入系统,必须加入演化规则。这些规则是定义在局部空间范围内的,即一个元胞下一时刻的状态决定于本身的状态和它的邻居元胞的状态。因此,在指定规则之前,必须定义一定的邻居规则,明确哪些元胞属于该元胞的邻居。
一维元胞自动机中,通常以半径r来确定邻居,距离一个元胞r内的所有元胞都属于该元胞的邻居。
二维元胞自动机的邻居定义较为复杂,但通常有以下几种(以正方形网格为例 )
-
-
规则
根据元胞当前状态及其邻居状况确定下一时刻该元胞状态的动力学函数,简单讲,就是状态转移函数。这个函数构造了一种简单的离散的时间和空间范围的局部物理成分。状态的变化可以由状态转移函数表示:
f : S t t + 1 = f ( S i t , . . . , S N t ) S N t 为 t 时刻的邻居状态组合 f:S_t^{t+1}=f(S_i^t,...,S_N^t)\\ S_N^t为t时刻的邻居状态组合 f:St