Capsule 胶囊网络学习笔记

以前邹班的SMT没认真听,还得重新回来捡。

参考自:https://blog.csdn.net/u013010889/article/details/78722140/

CNN的缺点:
忽略了图片中的位置信息,如果在图片中检测到眼睛鼻子等,就认为这是一张人脸,但如果把这些器官打乱,还是会误识别为人脸,这是CNN中max pooling的特性造成的。

这里写图片描述

如上图所示,我们通俗的将每个神经元的输出理解为这张图具有此特征的可能性(接近1就越可能具有某种特征),这里是用一个scale标量来表示图片是否具有此特征,capsule的思想就是把这些特征做出embedding,用一个向量来表示。所以就使得神经元的输出是向量而不是标量。

这里写图片描述
胶囊网络的单元结构和普通的神经元的区别在上图很明显了。核心思想大概就这些,具体细节或其他可以参考引用中的博客或者原文。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值