胶囊网络有意思的解析
1、传统的CNN
CNN中包含一个很重要的概念——池化(pooling)。它的作用是逐渐减低数据的尺寸,减少网络中参数的数量,从而使得计算资源消耗减少、网络收敛加速学习,还会有效控制过拟合。
但是,这也使CNN网络包含极大的缺陷。Capsule的提出者Hinton就认为池化在CNN中的好效果是个大错误甚至灾难。
池化,这一过程中包含了一个滤波器来减低尺度,但是这会导致重要的信息丢失。
2、胶囊
胶囊是一个包含多个神经元的载体,每个神经元表示图片中出现的特定实体的属性。是以向量的形式进行表达。
2.1 向量神经元和标量神经元(普通人工神经元)对比

SN 是从其他神经元接收输入标量,然后乘以标量权重再求和,然后将这个总和传递给某个非线性激活函数 (比如 sigmoid, tanh, Relu),生出一个输出标量。该标量将作为下一层的输入变量。

而胶囊网络的流程则不一样,如下图所示。
胶囊网络(Capsule)由Hinton提出,旨在解决传统CNN中池化导致的信息丢失问题。胶囊是包含多个神经元的向量载体,用于表达图片实体及其属性。工作流程包括矩阵转换、加权求和、非线性激活(使用squash函数)和动态路由。动态路由允许低级别VN将输出发送到与其输出一致的高级别VN,通过迭代更新权重实现。
最低0.47元/天 解锁文章
1759

被折叠的 条评论
为什么被折叠?



