HDU 3790 最短路径问题 【求花费最少的最短路径】

最短路径问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 15413 Accepted Submission(s): 4658

Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。

Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1

#include <stdio.h>  
#include <iostream>  
#include <math.h>  
#include <stdlib.h>  
#include <ctype.h>  
#include <algorithm>  
#include <vector>  
#include <string.h>  
#include <queue>  
#include <stack>  
#include <set>  
#include <map>  
#include <sstream>  
#include <time.h>  
#include <malloc.h>  

using namespace std;

/*
邻接矩阵的dij求最短路径
源点beg 到其他点最短路径
*/
const int MAXN = 1010;
const int INF = 1e9;

bool vis[MAXN];
int pre[MAXN];

//beg 起点
void dijkstra(int cost[][MAXN], int lowcost[], int n, int beg,int val[][MAXN],int lowval[])
{
    memset(vis,false,sizeof(vis));
    for (int i = 1; i <= n; i++)
    {
        lowcost[i] = cost[beg][i];
        lowval[i] = val[beg][i];
    }
    lowcost[beg] = 0;
    lowval[beg] = 0;
    vis[beg] = true;
    for (int j = 1; j < n; j++)
    {
        int k = -1;
        int MIN = INF;
        for (int i = 1; i <= n; i++)
            if (!vis[i] && lowcost[i] < MIN)
            {
                MIN = lowcost[i];
                k = i;
            }
        if (k == -1) break;
        vis[k] = true;
        for (int i = 1; i <= n; i++)
        {
            if (!vis[i] && lowcost[k] + cost[k][i] < lowcost[i])
            {
                lowcost[i] = lowcost[k] + cost[k][i];
                lowval[i] = lowval[k] + val[k][i];
            }
            else if (!vis[i] && lowcost[k] + cost[k][i] == lowcost[i])
            {
                lowval[i] = min(lowval[i],lowval[k] + val[k][i]);
            }
        }
    }
}

int n, m;
int a, b, c, d;
int s, t;
int p[MAXN][MAXN];
int val[MAXN][MAXN];
int lowcost[MAXN];
int lowval[MAXN];

int main()
{
    while (scanf("%d%d", &n, &m) != EOF)
    {
        if (n == 0 && m == 0)
            break;
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
            {
                if (i != j)
                {
                    p[i][j] = INF;
                    val[i][j] = INF;
                }
                else
                {
                    p[i][j] = 0;
                    val[i][j] = 0;
                }
            }
        for (int i = 0; i < m; i++)
        {
            scanf("%d%d%d%d", &a, &b, &c, &d);
            {
                if (p[a][b] > c)
                {
                    p[a][b] = p[b][a] = c;
                    val[a][b] = val[b][a] = d;
                }
                else if (p[a][b] == c && val[a][b] > d)
                    val[a][b] = val[b][a] = d;
            }
        }
        scanf("%d%d",&s,&t);
        dijkstra(p,lowcost,n,s,val,lowval);
        printf("%d %d\n", lowcost[t],lowval[t]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值