最短路径问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 19009 Accepted Submission(s): 5667
Total Submission(s): 19009 Accepted Submission(s): 5667
Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
(1<n<=1000, 0<m<100000, s != t)
Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2 1 2 5 6 2 3 4 5 1 3 0 0
Sample Output
9 11
解题思路:首先表示一下我做这道题的感受:尼玛,饭都没吃。刚开始看到的时候想了一会儿觉得有点思路,就开始做了,过了许久,代码算是写出来了,题上给的测试数据也对了,结果一提交立马就错。开始郁闷~~~ 接着就开始找错误,找了许久(因为之前考虑到亮点之间可能有多条路径的情况),最后发现还是错在了距离和费用覆盖的问题上,折腾了老半天才改正确了。不过这个题在迪杰斯特拉查找最短路中应该注意:从起点到下一个要经过的点的距存在相等,即到下一个点可能有多个满足条件,对于这些点应该一一个处理,具体的解释代码中给的有。提交正确后再想想这个题确实不难,难就难在细节处理上。所以还是细节决定成败啊!!!
代码最后我给出了三组测试数据,这三组数据的测试结果没问题的话,那提交应该也就没什么问题了
具体代码:
#include <stdio.h>
#include <string.h>
#define INF 0x3f3f3f3f
#define Min(a,b) a>b?b:a
struct Node
{
int adj,val;
}g[1005][1005];
int dist[1005];//距离
int value[1005];//费用
int used[1005];//标记
int n,m,i,j;
void Dijkstra(int s)
{
memset(dist,0x3f,sizeof(dist));
memset(value,0x3f,sizeof(value));
memset(used,0,sizeof(used));
dist[s]=0;//从起点开始
value[s]=0;
while(1)
{
int k,u=-1,d[1005];
int min=INF;
memset(d,0,sizeof(d));
for(i=1;i<=n;i++)
if(used[i]==0&&dist[i]<min)//找出从起点到下一个最小距离的顶点
{
min=dist[i];
u=i;//记录下标
}
if(u==-1)//判断所有顶点是否都到达过
return ;
for(i=1,k=0;i<=n;i++)
if(dist[u]==dist[i]&&used[i]==0)
d[k++]=i;//从起点到下一个要访问的顶点的最小距离可能有多个
for(i=0;i<k;i++)
used[d[i]]=1;
for(i=0;i<k;i++)//多个满足的点分别进行迪杰斯特拉最短路查找
for(j=1;j<=n;j++)
if(g[d[i]][j].adj!=INF && (dist[d[i]]+g[d[i]][j].adj)<=dist[j])
{//原理与 main()函数中建立邻接矩阵一样
if((dist[d[i]]+g[d[i]][j].adj)<dist[j])
value[j]=value[d[i]]+g[d[i]][j].val;
else
value[j]=Min(value[j],value[d[i]]+g[d[i]][j].val);
dist[j]=dist[d[i]]+g[d[i]][j].adj;
}
}
}
int main()
{
while(scanf("%d%d",&n,&m) && (n||m))
{
int a,b,d,p;
memset(g,0x3f,sizeof(g));
for(i=1;i<=m;i++)
{
scanf("%d%d%d%d",&a,&b,&d,&p);
if(d<=g[a][b].adj)//处理路径距离问题
{
if(d==g[a][b].adj)//如果距离相等,则存放最少的费用
g[a][b].val=g[b][a].val=Min(p,g[a][b].val);
else//否则,存放新路径距离的费用
g[a][b].val=g[b][a].val=p;
g[a][b].adj=g[b][a].adj=d;//填充路径距离
}
}
int s,t;
scanf("%d%d",&s,&t);
Dijkstra(s);
printf("%d %d\n",dist[t],value[t]);
}
return 0;
}
/*
//测试数据
2 2
1 2 5 10
2 1 4 12
1 2
4 12
4 4
1 2 5 6
2 3 4 5
1 4 5 10
4 3 4 2
1 3
9 11
6 7
1 2 5 6
1 3 5 1
2 6 2 1
3 4 1 1
4 2 1 1
4 5 1 1
5 2 3 1
5 6
4 3
*/
// 邻接矩阵的输出
// for(i=1;i<=n;i++)
// {
// for(j=1;j<=n;j++)
// {
// if(g[i][j].adj==INF)
// printf("%d/%d ",0,0);
// else
// printf("%d/%d ",g[i][j]);
// }
// printf("\n");
// }