Hive用户自定义函数UDAF开发

本文详细介绍了Hive用户自定义聚合函数UDAF的开发过程,包括两种实现方式、计算逻辑设计、关键方法的实现,以及一个销售额统计的示例。在Hive计算中,UDAF用于多行数据的聚合运算,涉及PARTIAL1、PARTIAL2、FINAL三个阶段,或仅PARTIAL1(COMPLETE)阶段。通过自定义UDAF,可以实现特定的聚合需求。
摘要由CSDN通过智能技术生成

释义

UDAF是User Defined Aggregation Function的简称。UDAF用来进行聚合运算,其输入是多行数据,输出一个计算结果。

如何开发

UDAF有两种实现方式:继承UDAF;或继承AbstractGenericUDAFResolver。前一种方式是简单的方式,但其使用了java的反射机制,因此性能上比后一种方式要低效,因此生产上不建议使用第一种方式。

计算的逻辑设计

继承AbstractGenericUDAFResolver抽象类,需要实现一个getEvaluator方法,该方法返回一个实例,该实例继承GnericEvaluator抽象类,GnericEvaluator的实现类才是进行聚合计算的具体实现类。

GnericEvaluator有以下几个方法需要开发自己实现:getNewAggregationBuffer、iterate、merge、reset、terminatePartial、terminate。另外需要重写init方法,该方法在抽象类中已经实现,但其返回值是null,在开发时如果不重新该方法,可能会在调用时报控指针异常。

一般的UDAF函数在hive计算过程中涉及到三个阶段,对应方式:PARTIAL1、PARTIAL2、FINAL。

PARTIAL1阶段是map阶段计算,此阶段会调用函数的init、iterate、terminatePartial三个方法。

PARTIAL2阶段是map后的combine阶段,是部分结果聚合,此阶段会调用函数的init、merge、terminatePartial三个方法。

FINAL阶段是reduce阶段,输出给hive最终结果,此阶段会调用函数的init、merge、terminate三个方法。

一些特殊的UDAF只有Map阶段,对应方式:COMPLETE。

COMPLETE只有Map阶段,其调用方法init、iterate、terminate三个方法。

方法释义

getNewAggregationBuffer方法是返回一个AggregationBuffer实例,该实例实现了AggregationBuffer接口,该接口是个空的接口,其方法是根据实际需要自己定义。AggregationBuffer实例是用来缓存中间及最后聚合结果的。

reset方法是重置AggregationBuffer实例。

iterate方法是逐行处理输入的数据的。

merge是进行计算结果合并的,包括combine阶段及reduce阶段。

ter

### 回答1: 可以使用Java语言编写Hive的自定义UDAF函数,但需要使用Hadoop Streaming API和Hadoop MapReduce API,并且需要确保实现的UDAF函数符合Hive的语义规范。 ### 回答2: Hive是一个开源的大数据仓库系统,用于处理和分析大规模结构化数据。Hive提供了丰富的函数库,以支持各种用例。除了内置函数外,Hive还支持自定义函数,其中包括自定义UDAF用户定义的聚合函数)。 使用Java编写Hive的自定义UDAF函数可以按照以下步骤进行: 1. 创建一个Java类,用于实现自定义的UDAF函数。这个类需要继承Hive的GenericUDAFResolver2接口,并实现其中的方法。 2. 在Java类中,需要定义输入参数类型、中间状态类型和输出类型。根据自定义UDAF函数的需求,可以使用Hive提供的数据类型,如IntWritable、DoubleWritable等。 3. 在Java类中,需要实现initialize、iterate、merge和terminatePartial等方法,用于初始化和处理计算逻辑。 - initialize方法用于初始化中间状态; - iterate方法用于迭代处理每一行输入数据; - merge方法用于合并不同mapper或reducer的中间状态; - terminatePartial方法用于返回部分聚合结果。 4. 在Java类中,需要实现terminate方法,用于返回最终的聚合结果。 5. 编译Java类,并将生成的jar文件添加到Hive的classpath中。 6. 在Hive中,使用CREATE FUNCTION语句创建自定义UDAF函数,并指定使用的jar文件和Java类名。 7. 在Hive中,可以使用自定义UDAF函数进行聚合操作,例如使用SELECT语句。 编写Java类时,需要根据自定义UDAF函数的需求进行逻辑的实现。在编写完成后,应当进行测试和调试,确保函数的正确性和性能。 通过以上步骤,就可以使用Java编写Hive的自定义UDAF函数,以满足特定的需求,对大规模结构化数据进行聚合和分析。 ### 回答3: 使用Java编写Hive的自定义UDAF函数需要以下步骤: 1. 创建一个Java类,实现Hive中的GenericUDAFEvaluator接口。该接口定义了自定义UDAF函数的行为。 2. 在类中实现五个方法:init()、iterate()、terminatePartial()、merge()和terminate()。 - init()方法用于初始化函数的内部状态。 - iterate()方法用于每次处理输入值。 - terminatePartial()方法在部分聚合完成后返回部分结果。 - merge()方法用于合并部分结果。 - terminate()方法在整个聚合完成后返回最终结果。 3. 在类中定义一个静态内部类,实现AggregationBuffer接口,用于存储聚合结果的中间状态。 4. 在类中重写toString()方法,用于返回自定义聚合函数的名称。 5. 在Hive中使用CREATE FUNCTION语句注册自定义UDAF函数,指定Java类的路径和函数名称。 下面是一个示例: ```java import org.apache.hadoop.hive.ql.exec.UDAF; import org.apache.hadoop.hive.ql.exec.UDAFEvaluator; import org.apache.hadoop.hive.ql.metadata.HiveException; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.StandardListObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.StandardPrimitiveObjectInspector; import java.util.ArrayList; import java.util.List; public class CustomUDAF extends UDAF { public static class Evaluator implements UDAFEvaluator { private List<Double> values; @Override public void init() throws HiveException { values = new ArrayList<Double>(); } // 输入值处理 public boolean iterate(Double value) throws HiveException { if (value != null) { values.add(value); } return true; } // 返回部分结果 public List<Double> terminatePartial() { return values; } // 合并部分结果 public boolean merge(List<Double> other) { if (other != null) { values.addAll(other); } return true; } // 返回最终结果 public Double terminate() { Double sum = 0.0; for (Double value : values) { sum += value; } return sum; } // 定义输入和输出值的类型 public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException { return StandardListObjectInspector .getListObjectInspector(StandardPrimitiveObjectInspector.PrimitiveCategory.DOUBLE); } } @Override public String toString() { return "custom_udaf"; } } ``` 在Hive中使用以下命令注册UDAF函数: ```sql CREATE FUNCTION custom_udaf AS 'com.example.CustomUDAF' USING JAR 'path/to/custom_udaf.jar'; ``` 然后可以在Hive中使用自定义UDAF函数进行聚合操作,例如: ```sql SELECT column, custom_udaf(column) AS sum FROM table GROUP BY column; ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值