Chang Chen, Zhiwei Xiong, Xinmei Tian, Zheng-Jun Zha, Feng Wu; Camera Lens Super-Resolution,The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 1652-1660
一、简介
概述:现有的单幅图像超分辨率(SR)方法通常采用双三次或高斯下采样等综合退化模型进行评估。本文从相机镜头的角度研究SR,即CameraSR,旨在缓解现实成像系统中分辨率(R)与视场(V)之间的内在权衡。具体地说,我们把R-V退化看作是SR过程中的一个潜在模型,并学习用现实的低分辨率和高分辨率图像对来逆转它。
贡献:
-
一个新的视角,即,相机镜头的R-V退化,用于现实成像系统中的SR建模。
-
在City100中,有两种新的获取LR-HR图像对的策略,分别用于描述单反相机和智能手机相机下的R-V退化。
-
利用实际数据对常用的合成退化模型进行定量分析。
-
一种有效的解决方案,即CameraSR,用于在现实成像系统中促进现有的基于学习的SR方法。
二、主要内容
文章思路清晰,验证充分。
1、R-V退化->定义问题
缩小镜头可以得到更大的FoV(视野),但这是以物体分辨率下降为代价的。将这种R(分辨率)-V(视野)退化表示为