hdu_oj_2066 一个人的旅行

这篇博客详细解析了HDU OJ中编号为2066的ACM竞赛题目——一个人的旅行,重点探讨了如何运用Dijkstra算法求解最短路径问题。
摘要由CSDN通过智能技术生成

一个人的旅行

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 22621    Accepted Submission(s): 7852



Problem Description
虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。
 

Input
输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个,草儿想去的地方有D个;
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。
 

Output
输出草儿能去某个喜欢的城市的最短时间。
 

Sample Input
  
  
6 2 3 1 3 5 1 4 7 2 8 12 3 8 4 4 9 12 9 10 2 1 2 8 9 10
 

Sample Output
  
  
9
 


用的多次dijkstra
start[],_end[]分别为最短路的起点和终点集合,
用循环分别对起点为 start[i] 进行最短路搜索,然后循环输出  lowcost[_end[i]] 即可
input第二行最后写 a,b之间可能有多条路,所以每组数据开始时先将所有点间距离改为 INF
然后每次读入 a,b,time 都进行判断:
if(times<cost[a-1][b-1])
	cost[b-1][a-1]=cost[a-1][b-1]=times;

#include <iostream>
#include <cstdio>
#include "cstring"

#define MAX_N 1010
#define INF 0x3f3f3f3f

using namespace std;

int vis[MAX_N];
int pre[MAX_N];
int cost[MAX_N][MAX_N];
int lowcost[MAX_N];
int start[MAX_N];
int _end[MAX_N];

void dijkstra(int cost[][MAX_N],int n,int beg)
{
	memset(lowcost,INF,sizeof(lowcost));
	memset(vis,0,sizeof(vis));
	memset(pre,-1,sizeof(pre));
	lowcost[beg]=0;
	for(int j=0;j<n;j++)
	{
		int k=-1;
		int Min=INF;
		for(int i=0;i<n;i++)
		{
			if(!vis[i]&&lowcost[i]<Min)
			{
				Min=lowcost[i];
				k=i;
			}
		}
		if(k==-1) break;
		vis[k]=1;
		for(int i=0;i<n;i++)
		{
			if(!vis[i]&&lowcost[k]+cost[k][i]<lowcost[i])
			{
				lowcost[i]=lowcost[k]+cost[k][i];
				pre[i]=k;
			}
		}
	}
}

int main()
{
	freopen("in.in","r",stdin);

	int t,s,d;
	while(~scanf("%d%d%d", &t, &s, &d))
	{
		memset(cost,INF,sizeof(cost));
		int n=0;
		for(int i=0;i<t;i++)
		{
			int a,b,times;
			scanf("%d%d%d", &a, &b, ×);
			n=n>a?n:a;
			n=n>b?n:b;
			if(times<cost[a-1][b-1])
				cost[b-1][a-1]=cost[a-1][b-1]=times;
		}
		for(int i=0;i<s;i++)
		{
			scanf("%d", &start[i]);
			start[i]--;
		}
		for(int i=0;i<d;i++)
		{
			scanf("%d", &_end[i]);
			_end[i]--;
		}
// <
		// for(int i=0;i<n;i++)
		// {
		// 	for(int j=0;j<n;j++)
		// 		cout<<cost[i][j]<<" ";
		// 	cout<<endl;
		// }
//>
		int Min=INF;
		for(int i=0;i<s;i++)
		{
			dijkstra(cost, n, start[i]);
//<			
			// for(int j=0;j<d;j++)
			// 	cout<<lowcost[_end[j]]<<" ";
			// cout<<endl;
//>
			for(int j=0;j<d;j++)
			{
				Min=Min<lowcost[_end[j]]?Min:lowcost[_end[j]];
				// cout<<"Min="<<Min<<endl;
			}
		}
		printf("%d\n", Min);
	}
	return 0;
}	



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值