好消息,最新CUDA和cuDNN安装,俩都可以用exe安装包直装了 CUDA12.6.3和cuDNN9.6.0 Windows系统 省事

最新CUDA和cuDNN安装俩都可以用exe安装包直装了,省去了旧版本管理、环境变量设置等繁琐操作 CUDA12.6.3和cuDNN9.6.0 Windows系统 

一、事前声明:

请一定谨慎尝鲜,因为目前CUDA12.6.3版本只支持用pip安装Preview (Nightly)版本的torch!!!更新这个版本的CUDA和cuDNN后,很大的可能会导致需要在每个虚拟环境中重新安装配置torch!!!对此,我深感无奈,也无法担责…在此CUDA版本下的目前安装命令我放在文章最后了……欢迎讨论

二、#记录工作

大家知道,在Windows系统在安装CUDA12.6.2及之前的版本时配置cuDNN需要下载压缩包,然后解压,然后复制移动,很不容易操作,有时无意的人为失误还会导致cuDNN配置失败。这下好了,最新的CUDA12.6.3和cuDNN9.6.0可以用.exe安装包直接安装配置了,更方便了,快去试试吧!

注:下载时需要登录NVIDAI帐号

请注意选择自己的系统版本,我这里演示的是Windows10版本下的,如果是Windows11版本的,请在以下地址中修改版本查找一下!

d6f578f7ac5d4e6aad7b226f1b381e67.png

6cdcc2fcb21b4cc0badff2330244bfe5.png

三、CUDA12.6.3下载地址:

CUDA Toolkit 12.6 Update 3 Downloads | NVIDIA Developer

04a256020f4a4955a14a822d7bff1253.png

 

四、cuDNN9.6.0载地址:

cuDNN 9.6.0 下载 |NVIDIA 开发人员

62513d534c054d5f88f7a75c50d2f114.png

两个安装包都下载完成之后安装:

 

五、CUDA简单的步骤记录:

c0c356881269422aa7898c53f9dee78c.png

 自动删除电脑中已安装的上一版本:

521bba647b7d442686168578b09f3cbe.png

 ab87894b5df3449c94d4d4cd74cbc5b6.png

5208e9e3efb342c2a0ea5317e7535af8.png

 

 

六、cuDNN9.6.0简单的步骤记录: 

9b013b65074941eca5c300bea241ab23.png

19d31638a3314607a623ae0eb97f4b29.png

这里可以自定义选择安装,也可以是上一步精简安装:只安装cuDNN9.6.0 

5c1cfe6148ca42a59cea10f64e0579ca.png

 0b4940d5025145a4b455bd4d2c8a7627.png

 

 

七、验证CUDA是否安装成功:

0d39a17d401a4c3f876f9dc0ae6c2cc3.png

 

八、在 Windows 系统上验证 cuDNN 是否安装成功,可以通过以下步骤来进行:

 1. 检查文件

首先,确认 cuDNN 的相关文件是否已经存在于你的系统中。cuDNN 安装后通常会包含以下几个主要文件:
- `cudnn.h` 或 `cudnn_version.h`
- `cudnn64_*.dll`
- `cudnn.lib`

这些文件一般位于 CUDA 的安装目录下,例如 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\include\` 和 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\lib\x64\` 目录。

2. 查看环境变量

确保你的环境变量已经正确设置。特别是 `PATH` 变量需要包含 cuDNN 的库文件路径。你可以在命令提示符中运行以下命令来查看当前的 `PATH` 变量:
cmd

echo %PATH%



确保路径中包含了类似 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\bin` 和 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\libnvvp` 这样的目录。

 

 

3. 编译并运行示例程序

你可以使用 NVIDIA 提供的一个简单的测试程序来验证 cuDNN 是否正确安装。以下是一个简单的步骤:

1. **下载和安装 CUDA 样例**:

   - 下载并解压 CUDA 样例包(可以从 NVIDIA 官网获取)。
   - 打开命令提示符,导航到样例包中的 `CUDNN_Samples` 目录。

 

2. **编译示例程序**:

   - 在命令提示符中运行以下命令来编译示例程序:
     cmd

cd C:\path\to\CUDNN_Samples
set CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y
set PATH=%CUDA_PATH%\bin;%PATH%
set INCLUDE=%CUDA_PATH%\include;%INCLUDE%
set LIB=%CUDA_PATH%\lib\x64;%LIB%
nvcc -o cudnn_test cudnn_test.cu -I%CUDA_PATH%\include -L%CUDA_PATH%\lib\x64 -lcudnn

 

3. **运行示例程序**:

   - 编译完成后,运行生成的可执行文件:
     cmd

cudnn_test.exe

 
   - 如果一切正常,你应该能看到程序输出有关 cuDNN 的一些基本信息,并且没有错误报告。

4. 使用 Python 框架进行验证

如果你是通过深度学习框架如 TensorFlow 或 PyTorch 来利用 GPU 加速计算的话,还可以通过相应的框架来间接验证 cuDNN 是否可用。

对于 **TensorFlow**:

1. 打开 Python 解释器或创建一个新的 Python 脚本。
2. 运行以下代码:
    ```python

import tensorflow as tf
print(tf.test.is_built_with_cuda())
print(tf.config.list_physical_devices('GPU'))


    如果返回值为 `True` 并且列出了你的 GPU 设备,则表明 TensorFlow 已经正确配置了 cuDNN。

对于 **PyTorch**:

1. 打开 Python 解释器或创建一个新的 Python 脚本。
2. 运行以下代码:
    python

import torch
print(torch.backends.cudnn.is_available())
print(torch.cuda.is_available())
print(torch.version.cuda)
print(torch.backends.cudnn.version())


    如果 `torch.backends.cudnn.is_available()` 返回 `True`,并且其他输出也显示了正确的信息,则说明 cuDNN 正常工作。

通过以上方法,你应该能够验证 cuDNN 是否在 Windows 系统上正确安装并配置成功。如果遇到问题,请检查相关的日志或错误信息以获得更多的诊断线索。

 

九、目前CUDA12.6.3下torch安装命令:

目前只能安装Preview (Nightly)版本(2024年12月09日23:12)

pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu126

更多安装命令参考:

Start Locally | PyTorch

ec58fc947a0348b1800cd3e442c39ca3.png 

安装torch 

af61317cc8c440a299a2c2124745efa7.png

 验证cuDNN安装:

fdf3b63b882a4f56815cd11178337ded.png

 

 

 

### WSL2 上安装配置 CUDA 12.6 cuDNN #### 准备工作 确保已经正确设置了 Windows Subsystem for Linux (WSL2),并选择了 Ubuntu 发行版作为操作环境。 #### 安装 CUDA 12.6 为了在 WSL2 的 Ubuntu 中安装 CUDA 12.6,可以按照如下方法执行: 通过命令行工具来获取最新的 NVIDIA 驱动程序支持以及设置必要的依赖项。接着利用 `pip` 来简化软件包管理过程,具体指令如下所示[^1]: ```bash sudo apt-get update && sudo apt-get upgrade -y distribution=$(. /etc/os-release;echo $ID$VERSION_ID) wget https://developer.download.nvidia.com/compute/cuda/repos/$distribution/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda-drivers ``` 完成上述步骤之后,继续安装特定版本的 CUDA 工具包: ```bash sudo apt-get install -y cuda-toolkit-12-6 export PATH=/usr/local/cuda-12.6/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-12.6/lib64\ ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` 验证安装是否成功的命令为: ```bash nvcc -V ``` 这一步骤会显示出编译器的具体信息及其所对应的 CUDA 版本号,确认其为预期中的 12.6 即表示安装无误[^2]。 #### 安装 cuDNN 对于 CUDA 12.6 而言,应该选择兼容此版本的 cuDNN 库。这里推荐采用 Python 包的形式来进行快速部署: ```bash pip install nvidia-cudnn-cu12 ``` 注意这里的 `-cu12` 后缀表明该库适用于 CUDA 12.x 系列;如果之前已安装过其他版本则需先卸载旧版本再重新安装新版本以避免冲突。 最后记得重启终端使所有的更改生效,并可通过导入 TensorFlow 或 PyTorch 这样的框架进一步检验 GPU 加速功能是否正常运作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

love530love

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值