最新CUDA和cuDNN安装俩都可以用exe安装包直装了,省去了旧版本管理、环境变量设置等繁琐操作 CUDA12.6.3和cuDNN9.6.0 Windows系统
一、事前声明:
请一定谨慎尝鲜,因为目前CUDA12.6.3版本只支持用pip安装Preview (Nightly)版本的torch!!!更新这个版本的CUDA和cuDNN后,很大的可能会导致需要在每个虚拟环境中重新安装配置torch!!!对此,我深感无奈,也无法担责…在此CUDA版本下的目前安装命令我放在文章最后了……欢迎讨论
二、#记录工作
大家知道,在Windows系统在安装CUDA12.6.2及之前的版本时配置cuDNN需要下载压缩包,然后解压,然后复制移动,很不容易操作,有时无意的人为失误还会导致cuDNN配置失败。这下好了,最新的CUDA12.6.3和cuDNN9.6.0可以用.exe安装包直接安装配置了,更方便了,快去试试吧!
注:下载时需要登录NVIDAI帐号
请注意选择自己的系统版本,我这里演示的是Windows10版本下的,如果是Windows11版本的,请在以下地址中修改版本查找一下!
三、CUDA12.6.3下载地址:
CUDA Toolkit 12.6 Update 3 Downloads | NVIDIA Developer
四、cuDNN9.6.0载地址:
两个安装包都下载完成之后安装:
五、CUDA简单的步骤记录:
自动删除电脑中已安装的上一版本:
六、cuDNN9.6.0简单的步骤记录:
这里可以自定义选择安装,也可以是上一步精简安装:只安装cuDNN9.6.0
七、验证CUDA是否安装成功:
八、在 Windows 系统上验证 cuDNN 是否安装成功,可以通过以下步骤来进行:
1. 检查文件
首先,确认 cuDNN 的相关文件是否已经存在于你的系统中。cuDNN 安装后通常会包含以下几个主要文件:
- `cudnn.h` 或 `cudnn_version.h`
- `cudnn64_*.dll`
- `cudnn.lib`
这些文件一般位于 CUDA 的安装目录下,例如 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\include\` 和 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\lib\x64\` 目录。
2. 查看环境变量
确保你的环境变量已经正确设置。特别是 `PATH` 变量需要包含 cuDNN 的库文件路径。你可以在命令提示符中运行以下命令来查看当前的 `PATH` 变量:
cmd
echo %PATH%
确保路径中包含了类似 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\bin` 和 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\libnvvp` 这样的目录。
3. 编译并运行示例程序
你可以使用 NVIDIA 提供的一个简单的测试程序来验证 cuDNN 是否正确安装。以下是一个简单的步骤:
1. **下载和安装 CUDA 样例**:
- 下载并解压 CUDA 样例包(可以从 NVIDIA 官网获取)。
- 打开命令提示符,导航到样例包中的 `CUDNN_Samples` 目录。
2. **编译示例程序**:
- 在命令提示符中运行以下命令来编译示例程序:
cmd
cd C:\path\to\CUDNN_Samples
set CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y
set PATH=%CUDA_PATH%\bin;%PATH%
set INCLUDE=%CUDA_PATH%\include;%INCLUDE%
set LIB=%CUDA_PATH%\lib\x64;%LIB%
nvcc -o cudnn_test cudnn_test.cu -I%CUDA_PATH%\include -L%CUDA_PATH%\lib\x64 -lcudnn
3. **运行示例程序**:
- 编译完成后,运行生成的可执行文件:
cmd
cudnn_test.exe
- 如果一切正常,你应该能看到程序输出有关 cuDNN 的一些基本信息,并且没有错误报告。
4. 使用 Python 框架进行验证
如果你是通过深度学习框架如 TensorFlow 或 PyTorch 来利用 GPU 加速计算的话,还可以通过相应的框架来间接验证 cuDNN 是否可用。
对于 **TensorFlow**:
1. 打开 Python 解释器或创建一个新的 Python 脚本。
2. 运行以下代码:
```python
import tensorflow as tf
print(tf.test.is_built_with_cuda())
print(tf.config.list_physical_devices('GPU'))
如果返回值为 `True` 并且列出了你的 GPU 设备,则表明 TensorFlow 已经正确配置了 cuDNN。
对于 **PyTorch**:
1. 打开 Python 解释器或创建一个新的 Python 脚本。
2. 运行以下代码:
python
import torch
print(torch.backends.cudnn.is_available())
print(torch.cuda.is_available())
print(torch.version.cuda)
print(torch.backends.cudnn.version())
如果 `torch.backends.cudnn.is_available()` 返回 `True`,并且其他输出也显示了正确的信息,则说明 cuDNN 正常工作。
通过以上方法,你应该能够验证 cuDNN 是否在 Windows 系统上正确安装并配置成功。如果遇到问题,请检查相关的日志或错误信息以获得更多的诊断线索。
九、目前CUDA12.6.3下torch安装命令:
目前只能安装Preview (Nightly)版本(2024年12月09日23:12)
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu126
更多安装命令参考:
安装torch
验证cuDNN安装: