ubuntu 20.04 安装 高版本cuda 11.7 和 cudnn最新版

本文详细指导了在Ubuntu20.04系统上安装NVIDIA显卡驱动,CUDA工具包,以及CUDNN的过程,包括选择合适的版本,安装步骤,环境变量配置和测试安装成功的验证方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、安装显卡驱动

 参考另一篇文章:Ubuntu20.04安装Nvidia显卡驱动教程_ytusdc的博客-CSDN博客

二、安装CUDA

英伟达官网(最新版):CUDA Toolkit 12.2 Update 1 Downloads | NVIDIA Developer

CUDA历史版本下载地址:CUDA Toolkit Archive | NVIDIA Developer

这里是nvidia给出的官方安装指南(遇到问题时可以查阅):

NVIDIA CUDA Installation Guide for Linux

cuda 和 显卡驱动版本对应关系:

CUDA 12.6 Update 2 Release Notes

2.1、选择 runfile 按照官网提示的输入到终端中的代码执行安装:

 2.2、安装过程选项选择 Continue

 gcc,如果报错直接安装gcc和g++就好。

sudo apt-get install gcc
sudo apt-get install g++

2.3、之后就继续,输入accept。

 2.4、之后就继续,把第一个选择驱动,给他回车取消,因为我们已经有驱动了。

2.5、在.bashrc里配置环境变量

然后就直接install。等待片刻后,会安装完成,然后在.bashrc里配置环境变量。

sudo gedit ~/.bashrc

 在打开文件的最后一行加上:

export PATH=$PATH:/usr/local/cuda/bin  
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64  
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64

然后 

source ~/.bashrc

2.6、查看是否安装成

执行命令nvcc --version (或nvcc -V), 可以看到安装OK了。

三、安装CUDNN

下载cudnn相应版本.
最新版下载地址:Log in | NVIDIA Developer
cudnn历史版本: cuDNN Archive | NVIDIA Developer

官方安装指南: Installation Guide - NVIDIA Docs

下载 CUDA 对应的cudnn 版本

 3.1、下载 Deb 版本进行安装

下载完后是一个Deb类型的文件,需要对其进行解压

sudo dpkg -i cudnn*.deb

3.2、解压完后会有提示,根据提示把CUDA GPG Key导入

  根据指令写

sudo cp /var/cudnn-local-repo-ubuntu2004-8.5.0.96/cudnn-local-0579404E-keyring.gpg /usr/share/keyrings/

注意!!!网上大部分包括官网教程都会让你下载3个包,但其实已经out了,最新的版本中解压过后,这3个包已经在 /var 中了,进入cudnn包中可以看到这3个Deb包,只需要依次进行解压即可

 3.3、Refresh the repository metadata.(必须,否则后面的命令无法使用)

sudo apt-get update

3.4、Install the runtime library.

sudo apt-get install libcudnn8=8.x.x.x-1+cudaX.Y

3.5、Install the developer library.

sudo apt-get install libcudnn8-dev=8.x.x.x-1+cudaX.Y

3.6、Install the code samples.

sudo apt-get install libcudnn8-samples=8.x.x.x-1+cudaX.Y

再次说明x.x.x是对应下载的cudnn版本信息,X.Y是 cuda的大版本和小版本信息

上面的 X.Y and 8.x.x.x 换成 /var/cudnn-local-repo-ubuntu2004-8.9.6.50 中文件中的相应版本号后,如下

sudo apt-get install libcudnn8=8.9.6.50-1+cuda11.8
sudo apt-get install libcudnn8-dev=8.9.6.50-1+cuda11.8
sudo apt-get install libcudnn8-samples=8.9.6.50-1+cuda11.8

四、测试安装是否成功

方式1:

新的 cudnn_version.h 文件路径跟老版本不同,解决方法如下,输入下面的命令,找到真实的位置

whereis cudnn_version.h

得到如下结果:

cudnn_version: /usr/include/cudnn_version.h

然后检测:

cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

方式2:

因为新版本的结构貌似已经变化,只需按照如下步骤即可

cp -r /usr/src/cudnn_samples_v8/ $HOME
cd  $HOME/cudnn_samples_v8/mnistCUDNN
make clean && make
./mnistCUDNN

如出现以下结果则cudnn完整安装

测试时候遇到的错误:

 如上图,是因为确实相应的库,安装相应库,再重新测试即可

sudo apt-get install libfreeimage3 libfreeimage-dev

### 如何在 VMware 虚拟机上的 Ubuntu安装配置 CUDA #### 准备工作 为了确保顺利安装 CUDA,在开始之前需确认虚拟机环境已正确设置并运行稳定版本的 Ubuntu。对于本指南而言,推荐使用的 Ubuntu 版本为 v-22.04[^1]。 #### 更新系统软件包列表 建议先执行系统更新操作来获取最新的软件包信息: ```bash sudo apt update && sudo apt upgrade -y ``` #### 安装必要的依赖项 安装 NVIDIA 显卡驱动程序前,需要预先安装一些基础工具支持库文件: ```bash sudo apt install build-essential dkms linux-headers-$(uname -r) ``` #### 下载适用于目标系统的 CUDA 工具包 访问[NVIDIA官方下载页面](https://developer.nvidia.com/cuda-downloads),根据实际需求选择合适的操作系统、架构以及发行版等参数组合后点击“Download”,这里以 Ubuntu 22.04 LTS为例。 #### 配置图形界面下的静默模式安装选项 为了避免安装过程中可能出现的人工干预提示,可以通过命令行方式指定安静模式来进行自动化的部署过程: ```bash sudo sh cuda_<version>_linux.run --silent --toolkit --override ``` 请注意替换 `<version>` 占位符为具体要安装的那个版本号字符串;同时考虑到兼容性因素,Ubuntu-v-22.04 最高支持到 CUDA-v-11.7.0。 #### 设置环境变量 为了让编译器能够识别新加入的路径资源,编辑 `~/.bashrc` 文件追加如下两行内容至末尾处: ```bash export PATH=/usr/local/cuda-11.7/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64\ ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` 接着使更改生效: ```bash source ~/.bashrc ``` #### 测试验证安装成果 最后一步就是通过简单的测试案例检验整个流程是否顺利完成。创建一个新的 C++ 源码文件名为 `test_cuda.cu` 并输入以下代码片段保存退出: ```cpp #include <stdio.h> int main() { printf("Hello from CUDA!\n"); int deviceCount; cudaGetDeviceCount(&deviceCount); if (deviceCount == 0) { fprintf(stderr, "No GPU found.\n"); return 1; } for(int i = 0 ;i<deviceCount;i++){ cudaSetDevice(i); cudaDeviceProp prop; cudaGetDeviceProperties(&prop,i); printf("GPU %d: %s\n",i ,prop.name ); } return 0; } ``` 编译上述源代码: ```bash nvcc test_cuda.cu -o test_cuda ``` 运行生成的目标可执行文件: ```bash ./test_cuda ``` 如果一切正常的话,则会看到类似下面这样的输出结果表示成功找到了至少一块可用的NVIDIA GPU设备并且显示其名称型号等相关属性信息。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值