Windows10 安装 CUDA 与 CUDNN
0 准备
CUDA 的安装需要两个包:CUDA和CUDNN(CUDA的一个补丁,用于优化深度学习),先安装CUDA,后安装CUDNN。
CUDA工具包发行说明:
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
CUDA版本汇总:
https://developer.nvidia.com/cuda-toolkit-archive
CUDA安装官方教程:
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html
CUDNN安装官方教程:
https://docs.nvidia.com/deeplearning/cudnn/installation/windows.html
1 安装显卡驱动
1.1 查看显卡型号
1、右键点击“此电脑”,在弹出菜单中选择“管理”,在计算机管理中选择“设备管理器”,找到“显示适配器”查看显卡型号
1.2 根据显卡型号在官网下载对应的显卡驱动
https://www.nvidia.cn/drivers/lookup/
1.3 nvidia 显卡算力查询
查询地址:CUDA GPU | NVIDIA 开发者
我的是 RTX 3060,算力86。
2 查看电脑支持CUDA版本
2.1 CMD 查看 CUDA版本
进入 CMD 窗口,输入 nvidia-smi 指令查看CUDA版本。
显卡驱动版本向下兼容,其决定了可安装的 CUDA Toolkit 的最高版本,高版本的驱动支持低版本的 CUDA。
我的显卡驱动版本是560.94,可安装的CUDA最高版本为12.6,版本向下兼容,就是说CUDA 12.6及以下版本的都可以安装。
参考 CUDA Toolkit 的发布说明:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
2.2 NVDIA 控制面板查看 CUDA版本
搜索框输入 nvidia,打开 nvidia 控制面板,点击系统信息,点击组件,即可看到支持CUDA的最高版本(也可以选择低于该版本)
3 安装CUDA
在这里,我们使用 CUDA Toolkit 12.6 Update 2 版本。在实际应用中,我们不一定用最新 CUDA 版本。比如说我们如果要使用 PyTorch-GPU,我们需要用与之匹配的 CUDA 版本。
3.1 CUDA下载
下载地址:CUDA Toolkit 12.6 Update 2 Downloads | NVIDIA Developer
Toolkit 版本明细列表:CUDA Toolkit Archive | NVIDIA Developer
双击下载的安装包进行安装,
临时路径,默认即可,安装后这个文件夹会自动删除。
选择自定义,【精简】会覆盖当前的显卡驱动
Display Driver:去掉勾选,已经安装了560.94的显卡驱动,不需要重新安装。
选择安装位置,默认即可。
3.2 在 CMD 中输入 nvcc -V 或者 nvcc --version 检测 CUDA 版本来确定是否安装成功。
C:\Users\PC_LZC>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright