
自然语言处理
ttv56
peking university
展开
-
用神经网络做情感分类《Transformation Networks for Target-Oriented Sentiment Classification》
原文链接 本文发表于自然语言处理顶级会议 ACL 2018 项目源码链接摘要在情感分类任务中,人们关注的往往是一句话中所表露出情感的“最重要”的一部分,比如在美团上经常会有这种评价:“这家店的菜做的不错,但是服务特别差!”,而对于餐厅管理者来说,这条评论他们最关注的是“这家店服务特别差”这个部分,即整个句子对他们餐厅所表现出来的情感是“不满意”的,“这家店菜做的不错...原创 2018-07-29 15:23:22 · 5741 阅读 · 1 评论 -
论文笔记《Consensus Attention-based Neural Networks for Chinese Reading Comprehension》
原文链接 本文发表于人工智能领域B类会议 COLING 2016摘要随着NLP研究如火如荼的发展,机器阅读理解技术也有了一个爆炸式的增长,一些机构公开的完形填空式的阅读理解数据集,极大的促进了机器阅读理解技术的提升。本文首先提出了提出了两个中文阅读理解数据集,分别为日常新闻数据集和儿童通话数据集。此外,本文提出了一种基于consensus attention的神经网络,其...原创 2018-08-07 17:08:42 · 903 阅读 · 2 评论 -
文本情感转换《Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer》
原文链接 本文发表于自然语言处理领域顶级会议 NAACL 2018摘要本文认为文本情感转换任务可以定义为:只将句子的情感改变,而不改变与情感无关的部分,比如“这件衣服的尺码很合适”改为“这件衣服的尺码太小啦”,仅仅将“很合适”改为“太小啦”,因为这两个词是影响到句子的“情感”的,其它部分则是无关紧要的存在。本文的训练集是一些被标注了所属情感(positive或negati...原创 2018-08-22 23:25:06 · 1882 阅读 · 0 评论 -
使用语言学特征进行文本情感分类《Linguistically Regularized LSTM for Sentiment Classification》
原文链接 本文发表于自然语言处理领域顶级会议 ACL 2017 代码链接摘要本文主要是做句子情感分类任务的研究,前人做的工作大多都依赖于短语级别的标注,这样费时费力,而一旦仅使用句子级别的标注的话模型效果就会大幅下降。本文提出了一种简单的句子级情感分类模型,把语言学规则(情感词典,否定词和程度副词)融入到现有的句子级LSTM情感分类模型中。模型 语言学知...原创 2018-08-23 13:47:44 · 2041 阅读 · 0 评论 -
DPCNN做文本分类《Deep Pyramid Convolutional Neural Networks for Text Categorization》
原文链接 本文发表于自然语言处理领域顶级会议 ACL 2017 代码链接摘要原创 2018-08-28 16:06:57 · 10218 阅读 · 5 评论 -
CNN文本分类《Convolutional Neural Networks for Text Categorization: Shallow Word-level vs. Deep Charact》
原文链接 本文仅在axive上发表摘要在文本分类领域,主要都是基于CNN和LSTM来做的,但是LSTM的复杂度比CNN高得多,一旦进行长文本或大量文本的训练,就会特别耗时,而CNN就要快得多。故本文在长文本分类领域对比了在字符级别和词语级别的CNN模型分别的效果:Our earlier work (2015) [3, 4]: shallow word-level C...原创 2018-08-24 12:48:29 · 1187 阅读 · 0 评论 -
深层CNN做文本分类《Very Deep Convolutional Networks for Natural Language Processing》
原文链接 本文是人工智能著名学者Yann Lecun的作品 代码链接摘要传统解决NLP任务的网络结构为RNN和CNN,但是比起在图像领域的效果,CNN在NLP领域的效果实在是差强人意,本文提出了一种新型的CNN结构,它直接在字符级别上进行操作,并且只使用简单的卷积和池化操作。本文实验表明,模型的性能随着深度的增加而增加,本文最终使用了29个卷积层,在公开数据集上进行...原创 2018-08-24 14:21:55 · 1911 阅读 · 1 评论 -
seq2seq模型实现
致谢 找了很久才找到的一个非常不错的seq2seq实现的教程 源代码基于tensorflow 1.6 原文链接正文本文是基于TensorFlow 1.6版本的Seq2Seq模型实现了一个机器翻译(Machine Translation)模型的baseline。本篇代码与去年我在知乎专栏上发表的从Encoder到Decoder实现Seq2Seq模型大同小异,更新的原...转载 2018-09-05 13:21:56 · 1465 阅读 · 1 评论 -
attention+RNN做文本情感分类《Recurrent Attention Network on Memory for Aspect Sentiment Analysis》
原文链接 本文发表于自然语言处理领域顶级会议 ACL 2017 代码链接摘要本文提出了一种基于多重attention的可以捕捉长距离情感特征的框架,该框架对无关信息具有更强的鲁棒性,并且将多重attention的结果与RNN进行非线性组合,从而模型能够提取更加复杂的特征。实验表明本文提出的框架效果不错。模型我们假设输入句子是一个序列 s={s1,s2,....原创 2018-09-10 13:47:10 · 3800 阅读 · 0 评论 -
论文笔记《Attention Is All You Need》
原文链接 本文发表于人工智能顶级会议 NIPS 2017 代码实现摘要现在主流的sequence2sequence的模型都是基于复杂的CNN或RNN结构,目前效果最好的几个模型都采用了attention机制,本文提出了一种新的简单的网络结构,能够完全抛弃CNN和RNN,只需要使用attention就能够让效果变得非常好。模型本文模型如下图所示: 图...原创 2018-08-06 21:54:33 · 2572 阅读 · 0 评论 -
论文笔记《Domain Adapted Word Embeddings for Improved Sentiment Classification》
原文链接 本文发表于自然语言处理领域顶级会议 ACL 2018摘要通用的词语embedding是在大规模语料下训练出来的具有通用性的特点,但在特定领域表现欠佳,而特定领域的词语embedding仅在特定领域能够使用,欠缺通用性。本文提出了一种兼具通用性和领域性的词语embedding方式,实验效果不错。模型设矩阵 WDS∈R|VDS|×d1WDS∈R|VDS|...原创 2018-08-11 22:23:40 · 573 阅读 · 1 评论 -
中文实体抽取(NER)论文笔记《Chinese NER Using Lattice LSTM》
原文链接 本文发表于自然语言处理领域顶级会议ACL 2018摘要本文提出了一种用于中文NER的LSTM的格子模型,与传统使用字向量的模型相比,本文提出的模型显式地利用了字序列之间的关系。与传统使用词向量的模型相比,本文提出的模型能够很好的避免分词错误带来的影响。介绍:作为信息抽取任务的基本步骤,NER一直受到NLP学界的广泛关注。传统方法一般把NER看作是一个序列...原创 2018-07-20 19:32:59 · 20453 阅读 · 18 评论 -
论文笔记《Targeted Aspect-Based Sentiment Analysis via Embedding Commonsense Knowledge into an Attentive》
原文链接 本文发表于人工智能领域顶级会议 AAAI 2018摘要在情感分类任务中,人们关注的往往是一句话中所表露出情感的“最重要”的一部分,比如在美团上经常会有这种评价:“这家店的菜做的不错,但是服务特别差!”,而对于餐厅管理者来说,这条评论他们最关注的是“这家店服务特别差”这个部分,即整个句子对他们餐厅所表现出来的情感是“不满意”的。本文提出一种方案,通过将句子中的重要...原创 2018-07-31 13:52:20 · 5526 阅读 · 3 评论 -
将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》
本文发表于自然语言处理领域顶级会议 ACL 2018 原文链接 特别说明:笔记掺杂了本人大量的个人理解,以及口语化的语言,由于本人水平有限,极有可能曲解原文的意思,各位看官随意看看,切莫当真~摘要迁移学习在图像领域大放异彩,可是在NLP领域却用途寥寥,这是因为现有的NLP模型都与迁移学习不兼容,每次更新任务都需要重头开始训练模型,否则就会导致模型习得的语言特征灾难性地丢...原创 2018-07-27 20:07:43 · 7591 阅读 · 3 评论 -
基于树模型的机器翻译《Forest-Based Neural Machine Translation》
原文链接 本文发表于自然语言处理领域顶级会议 ACL 2018原创 2018-08-09 19:48:51 · 650 阅读 · 0 评论 -
监督学习词向量的方法《Deep contextualized word representations》
原文链接 本文发表于自然语言处理领域顶级会议 ACL 2018摘要本文提出了一种提取深层次语义特征的词向量的方法,该方法是通过一个在大规模语料库上预训练得到的模型来提取词向量的。通过本文方法提取到的词向量效果十分好,可用于多种类型的NLP任务。模型本文提出的新型词向量表示方式,其实是把一个双向...原创 2018-08-06 16:36:45 · 4483 阅读 · 1 评论 -
Elmo原文翻译
原文链接#Deep contextualized word representations##1.Introduction什么是一个好的词向量能够反映出语义和语法的复杂特征.能够准确的对不同上下文进行反应.deep contextualized 词向量的特点使用理念方面:在原先的词向量模型中, 每个词对应着一个向量, 但是这个模型是根据一个句子赋予每个词汇向量. 因此对...原创 2019-03-17 18:07:40 · 2789 阅读 · 0 评论