如何使用Flux+lora进行AI模型文字生成图片

目录

概要

前期准备

部署安装与运行

1. 部署ComfyUI  本篇的模型部署是在ComfyUI的基础上进行,如果没有部署过ComfyUI,请按照下面流程先进行部署,如已安装请跳过该步:

(1)使用命令克隆 ComfyUI

(2)安装 conda(如已安装则跳过)

(3)创建虚拟环境

 (4) 安装pytorch

 (5) 安装需要的依赖

2.部署Flux.1

(1)下载Flux.1模型

(2)下载Clip模型

(3)下载工作流

 3. 部署lora

   (1) 下载flux1-dev-fp8模型

(2) 下载lora模型

(3) 导入工作流


概要

  最近AI生成图片也是越来越火爆了, 我也是尝试着搭建了一下目前主流的comfyui来进行图片生成,下面是一些基本搭建的流程以及最后的效果展示。

前期准备

  1. 一台带有gpu(越nb越好)显卡的服务器.显存最低要求8G以上,cuda要求11.8以上
  2. 准备好Miniconda安装包并安装好conda虚拟环境,安装包为Miniconda3-latest-Linux-x86_64.sh
  3. 使用git clone下载comfyui
  4. 准备好需要的模型,flux1-dev_3.safetensors, clip_l.safetensors,t5xxl_fp16.safetensors,t5xxl_fp8_e4m3fn.safetensors,ae.safetensors,LR_Pho_Realistic-FLUX__v1.0.safetensors,  一般model_scope上都有下载

部署安装与运行

1. 部署ComfyUI
  本篇的模型部署是在ComfyUI的基础上进行,如果没有部署过ComfyUI,请按照下面流程先进行部署,如已安装请跳过该步:
(1)使用命令克隆 ComfyUI
git clone https://github.com/comfyanonymous/ComfyUI.git
cd ComfyUI

(2)安装 conda(如已安装则跳过)


下面需要使用 Anaconda Mimiconda 创建虚拟环境,可以输入 conda --version 进行检查。下面是 Mimiconda 的安装过程:

下载 Miniconda 安装脚本

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh


运行安装脚本

bash Miniconda3-latest-Linux-x86_64.sh


遵循安装提示并初始化
按 Enter 键查看许可证条款,阅读完毕后输入 yes 接受条款,安装完成后,脚本会询问是否初始化 conda 环境,输入 yes 并按 Enter 键。

运行 source ~/.bashrc 命令激活 conda 环境
再次输入 conda --version 命令来验证是否安装成功,如果出现类似 conda 4.10.3这样的输出就成功了。


(3)创建虚拟环境


输入下面的命令:

conda create -n comfyui
conda activate comfyui
 (4) 安装pytorch

pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121
 (5) 安装需要的依赖

  

pip install -r requirements.txt

此时所需环境就已经搭建完成,通过下面命令进行启动:

python3 main.py --listen 0.0.0.0 --port 8189

 访问机器地址+端口能出现如下图就是正常启动了

2.部署Flux.1
(1)下载Flux.1模型

官方提供了Flux.1系列模型,共有三个:Flux.1[pro]是闭源的,可以从官方 API 申请访问权限,同时支持企业定制。Flux.1[dev]开源,不可商用,直接从 FLUX.1 [pro] 蒸馏而来,具备相似的图像质量和提示词遵循能力,但是更高效。Flux.1[schnell]:开源模型,可商用,专门为本地开发和个人使用量身定制,生成速度最快,内存占用也最小。

进入hugging face网站,点击搜索“flux.1”然后选择dev模型

 然后点击文件模型就可以看到下图的相关文件

将该模型下载到 /ComfyUI/models/unet/文件夹下,如果这个模型对于你太大就搜索“flux-fp8”下载11.9G的模型。将ae.safetensors下载到 /ComfyUI/models/vae/文件夹下。

(2)下载Clip模型

在hugging face搜索栏搜索”flux_text_encoders“,点击进去

下载clip_l和t5xxl模型,其中t5xxl模型有两个,根据自己的显卡情况二选一下载(如果你有超过 16GB 的 ram,建议使用 fp32),放置在 ComfyUI/models/clip/文件夹下

(3)下载工作流

进入网站:Flux Examples | ComfyUI_examples (comfyanonymous.github.io)并将下图下载,然后拖入Comfy UI中

到这里基础的comfyui+flux就搭建完成了, 可以开始进行基础的文生图操作了, 如果对comfyui里的这些构件, 节点如何使用、配置不熟悉的小伙伴后续我再整理关于如何使用comfyui

 3. 部署lora
   (1) 下载flux1-dev-fp8模型

    进去到魔搭社区https://civitai.com/models/622579/flux1-dev-fp8, 找到flux1-dev-fp8模型,下载对应的模型文件

(2) 下载lora模型

   进入到F.1 Realistic Portrait LoRA-LoRA-tensorxy-LiblibAI 下载微调后的模型

(3) 导入工作流

   https://civitai.com/models/622579/flux1-dev-fp8, 导出这个工作流, 并导入到我们自己的comfyui中就可以开始生成媲美专业摄影师级别的图片了

### 使用 FluxLoRA 进行机器学习模型训练 #### 准备环境与工具 为了能够顺利地使用 FluxLoRA 来进行模型训练,首先需要准备好相应的开发环境。这通常意味着要安装 Python 及其必要的库文件,比如 PyTorch 或 TensorFlow 等深度学习框架。对于特定于 Flux 的情况,则需按照官方文档指导完成 Julia 编程语言及其依赖项的设置。 #### 加载预训练模型并应用LoRA微调 当准备就绪之后,可以从 Hugging Face Hub 下载预先训练好的基础模型作为起点[^2]。接着利用 LoRA 技术对该模型实施低秩适配(low-rank adaptation),即只更新部分参数而非整个网络结构中的所有权重值。这种方法不仅提高了效率而且减少了过拟合的风险。 ```python from peft import LoraConfig, get_peft_model import torch.nn as nn model = ... # Load your base model here. config = LoraConfig( r=8, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, ) peft_model = get_peft_model(model, config) ``` #### 构建数据集用于训练过程 构建适合当前任务的数据集至关重要。如果目标是创建像“黑神话悟空”这样的角色图像生成器,则应收集大量与此主题相关的高质量图片样本,并将其整理成可用于训练的形式。这些数据应当被划分为训练集、验证集以及测试集三大部分以便后续评估模型性能[^3]。 #### 开始训练流程 一旦上述准备工作全部完成后就可以启动实际的训练环节了。此阶段涉及到定义损失函数(loss function)、优化算法(optimizer algorithm)以及其他超参的选择。值得注意的是,在每次迭代过程中都要保存好最佳版本的模型副本至指定路径下以供将来部署或进一步改进之用[^1]。 ```python output_dir = "./ai-toolkit/output" for epoch in range(num_epochs): ... if best_loss > current_loss: best_loss = current_loss checkpoint_path = f"{output_dir}/best_model.pth" torch.save(peft_model.state_dict(), checkpoint_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zrx林夕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值