[ComfyUI]Flux两款加速Lora比较,效果很不错

众所周知,Flux模型虽然好用,但是生成时间太长了,之前也提到过一些解决方案,比如使用量化版本的大模型、使用云端插件bizyAir,或者直接租用云服务器,今天呢再给大家推荐一种方案,就是加速lora。

目前出来的有两种加速lora,分别是字节的Hyper_SD模型和阿里最近刚出的Trubo模型,今天嘟嘟就带着大家一起来体验一番。

字节的Hyper_SD很早就有了,最早是支持SD1.5和SDXL的,Hyper-SD是一种基于模型蒸馏和LoRA技术的图像合成加速技术,通过创新的方法加速图像生成过程,使得用户能够在更短的时间内获得高质量的图像。这次呢,推出了基于Flux的Hyper模型,也算老玩家了,有8步和16步两种选择。

在这里插入图片描述

阿里妈妈最近也推出的基于FLUX的加速模型FLUX.1-Turbo-Alpha,该模型是基于FLUX.1-dev模型的8步蒸馏版lora,我们使用特殊设计的判别器来提高蒸馏质量。该模型可以用于T2I、Inpainting controlnet和其他FLUX相关模型。和字节上面效果一致,所以拿出来对比。

在这里插入图片描述

02

安装使用

Hyper_SD模型下载:

https://huggingface.co/ByteDance/Hyper-SD/tree/main

在这里插入图片描述

FLUX.1-Turbo-Alpha模型:

https://huggingface.co/alimama-creative/FLUX.1-Turbo-Alpha/tree/main

在这里插入图片描述

可以看到,字节的大一些1.39G,阿里的只有694M,那到底哪个更好用呢,咱们一起来瞅瞅。

存放路径:models/loras

03

使用介绍

我们使用Flux通用的加载lora的工作流,用最高配的fp16 dev模型。

字节Hyper_SD 推荐的Lora强度为 0.125,guidance 3.5。

阿里的 FLUX.1-Turbo-Alpha 推荐Lora强度为1,guidance 3.5。

接下来,我们分别展示原图、Hyper_SD、Turbo的效果对比图,分两组哈。

工作流如下:

在这里插入图片描述

我们分别从写实、风景、卡通、动物 这四个方面来做对比。

左图是原版20步不加lora效果,中间是使用Hyper_SD效果,右边是使用FLUX.1-Turbo-Alpha效果。

01.写实美女

Annie Leibovitz Model features: Asian female models wear gorgeous traditional costumes,showing the beauty of culture and tradition ., Lens description :, The camera uses a standard lens 50mm f/1.8 to capture the natural expressions of the model in a carefully arranged scene., English: Using a 50mm f/1.8 standard lens,the model’s natural expressions are captured in a carefully staged setting

8步

在这里插入图片描述

16步

在这里插入图片描述

02.风景

raining,natural scenery,green tree,spring,hills,Ancient Chinese palaces,cinematic_angle,depth of field,fisheye,dynamic_angle,lens_flare,landscape, dandan,real, HDR,UHD,8K,best quality,masterpiece,Highly detailed,Studio lighting,ultra-fine painting,sharp focus,physically-based rendering, extreme detail description,Professional,masterpiece,best quality,delicate,beautiful,real,CG,

8步

在这里插入图片描述

16步

在这里插入图片描述

03.卡通

anime artwork Advertising poster style magazine “Flux AI” cover design, the cover picture is a miniature scene made of wool felt, a cute little white fox wearing in cyber punk style clothes, wearing a headphone, playing guitar in a futurism stage, . Professional, modern, product-focused, commercial, eye-catching, highly detailed . anime style, key visual, vibrant, studio anime, highly detailed

8步

在这里插入图片描述

16步

在这里插入图片描述

04.动物

Parrot close-up

8步

在这里插入图片描述

16步

在这里插入图片描述

上面就是对比效果了,大家觉得如何,觉得哪种效果好,加速lora的本质就是用质量换时间,降低一些质量,大大提高生成速度。

然后我们来对比下他们生成的速度,我本地是4090显卡,下面是分别跑出来的时间对比。

我是跑了多次后抽取出来相对平均的时间。

8步的话,时间节省了 55%+

16步的话,提效了19%+

所以还是很给力的。

在这里插入图片描述

04

总结

以上就是Flux生态下两种加速lora的对比介绍了,还不错,大家下载下来试试,当作辅助工具挺好用。

技术的迭代是飞快的,要关注最新的消息才不会掉队。

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述
在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

在这里插入图片描述

### Flux 和 Diffusers 初学者使用教程 #### 了解 Flux 和 Diffusers Flux 是一种参数量较大的模型,包括扩展编码器、自动编码器和扩散模型[^1]。这些组件共同作用使得 Flux 能够处理复杂的图像生成任务。Diffusers 库则提供了用于推理的强大工具,在使用 Flux 进行推理时,显存占用约为 30 GB。 对于初学者来说,可以先尝试使用较小规模的预训练模型来熟悉工作流程。例如,ComfyUI 提供了一个部署与测试 FLUX.1 图像生成模型的教程,该版本采用 FP16 格式,大小约 23 GB[^2]。这有助于减少硬件资源的需求,使学习过程更加顺畅。 #### 安装环境 为了开始使用 Flux 和 Diffusers,首先需要安装必要的库: ```bash pip install diffusers transformers safetensors ``` 如果打算通过 ComfyUI 来运行,则还需要按照其官方文档中的说明设置相应的环境。 #### 加载并配置模型 加载 Flux 模型可以通过 Hugging Face Model Hub 实现。下面是一个简单的 Python 示例代码片段展示如何加载 `black-forest-labs/FLUX.1-dev` 模型[^4]: ```python from diffusers import StableDiffusionPipeline model_id = "black-forest-labs/FLUX.1-dev" pipeline = StableDiffusionPipeline.from_pretrained(model_id).to("cuda") ``` 这段代码会下载指定 ID 的预训练权重,并将其移动到 GPU 上以便加速计算。 #### 修改配置文件 当涉及到微调或其他高级操作时,可能需要调整一些超参数或路径设定。比如在 `train_lora_flux_24gb.yaml` 文件中指定了图像数据集的位置以及所使用的基底扩散模型名称[^3]: ```yaml folder_path: "joy-caption-pre-alpha/image_datasets/yky_ori_dataset" name_or_path: "FLUX.1-dev" ``` 这里定义了两个重要字段:一个是存储图片及其对应描述文本的数据集目录;另一个是指向作为起点的基础扩散模型。 #### 执行推理 完成上述准备工作之后就可以执行实际的任务了。假设已经准备好了一张输入图片,那么接下来就是调用 pipeline 对象来进行预测: ```python import torch from PIL import Image image = Image.open("path_to_input_image.jpg") # 替换成自己的图片路径 output_images = pipeline(prompt="a photo of an astronaut riding a horse", image=image, num_inference_steps=50) for i, img in enumerate(output_images.images): img.save(f"output_{i}.png") ``` 此脚本读取一张本地图片文件作为条件输入,并根据给定提示词生成新的合成图像保存至磁盘上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值