在知乎上看到大佬的解释,觉得说的很透彻,马下来,以后学习中可以经常翻阅!
视觉里程计:简而言之,就是把新来的数据与上一帧进行匹配,估计其运动,然后再把运动累加起来的东西。
回环检测:就是如何有效的检测出相机经过同一个地方这件事,它可以帮助消除长时间累计的误差,本质是场景识别问题。
对极约束:描述的是两幅视图之间的内在射影关系,与外部场景无关,只依赖于摄像机内参数和这两幅试图之间的的相对姿态
基本矩阵:反映【空间一点P的像素点】在【不同视角摄像机】下【图像坐标系】中的表示之间的关系。
本质矩阵:反映【空间一点P的像点】在【不同视角摄像机】下【摄像机坐标系】中的表示之间的关系。
本质矩阵和基础矩阵的区别是什么? - apollon wong的回答 - https://www.zhihu.com/question/27581884/answer/105606049
单应矩阵:空间点三维坐标到像素坐标(齐次形式)的转换矩阵。
光流:通过检测图像中光点和暗点的移动,来判断图像中像素点相对于观测者的移动速度。如果场景是静止的,就可以得到观测者的相对移动速度。
位姿图:后端图优化方法一,BA中,不管路标了,原来是路标和顶点之间构成边,而这里是顶点和顶点之间构成边,求得是两个相机位姿之间的相对运动。路标点这时候只是对姿态节点的约束。
因子图:后端图优化方法二,就是对函数因子分解的表示图,一般内含两种节点,变量节点和函数节点。我们知道,一个全局函数能够分解为多个局部函数的积,因式分解就行了,这些局部函数和对应的变量就能体现在因子图上。
贝叶斯网络:既形式上,一个贝叶斯网络就是一个有向无环图,结点表示随机变量,可以是可观测量、隐含变量、未知参量或假设等;结点之间的邮箱边表示条件依存关系,箭头指向的结点依存于箭头发出的结点(父节点),每个结点都与一个概率函数相关。
KF:卡尔曼滤波,线性系统评估方法,通过给系统状态方程输入输出观测数据,对系统状态进行最有评估的算法。
EKF : 扩展卡尔曼滤波,非线性系统评估方法一,将期望和方差线性化,可应用于时间非线性的动态系统。
UKF:无损卡尔曼滤波,非线性系统评估方法二,结合了无损变换,使非线性系统方程适用于线性假设的KF。
PF:粒子滤波,非线性非高斯系统评估方法,通过寻找一组在状态空间中传播的随机样本来近似的表示概率密度函数,用样本均值代替积分运算,进而获得系统状态的最小方差估计的过程,这些样本被形象的称为“粒子”,故而叫粒子滤波。
PnP:PnP问题解决了已知世界参考系下地图点以及相机参考系下投影点位置时3D-2D相机位姿估计问题,不需要使用对极约束(存在初始化,纯旋转和尺度问题,且一般需要8对点),可以在较少的匹配点(最少3对点,P3P方法)中获得较好的运动估计,是最重要的一种姿态估计方法。
ORB特征:ORB(Oriented FAST and Rotated BRIEF)是一种基于FAST增加了主方向的快速特征点提取和描述的算法。