Tiger-Li
码龄12年
  • 3,430,032
    被访问
  • 75
    原创
  • 1,259,468
    排名
  • 1,061
    粉丝
  • 29
    铁粉
关注
提问 私信

个人简介:大家好

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2010-09-23
博客简介:

kebu12345678的博客

查看详细资料
  • 7
    领奖
    总分 3,523 当月 10
个人成就
  • 获得1,329次点赞
  • 内容获得170次评论
  • 获得5,467次收藏
创作历程
  • 3篇
    2022年
  • 16篇
    2021年
  • 23篇
    2020年
  • 108篇
    2019年
  • 295篇
    2018年
  • 432篇
    2017年
成就勋章
TA的专栏
  • 计算机视觉
    7篇
  • PLC
    4篇
  • FPGA
    172篇
  • Xilinx-Vidado-HLS-Zynq
    49篇
  • 群智能优化算法
    12篇
  • 机器学习
    111篇
  • 分布式计算
  • Spark
    38篇
  • 并行计算&GPU&CUDA&OpenMP
    74篇
  • Hadoop
    5篇
  • ARM
    48篇
  • DSP
    2篇
  • python
    41篇
  • 我的科研生活
    60篇
  • 论文笔记
    1篇
  • Matlab
    36篇
  • 算法基础
    29篇
  • 图像处理算法
    1篇
  • C++
    28篇
  • Latex
    78篇
  • linux 驱动
    4篇
  • 论文写作
    61篇
  • 计算机体系结构
    2篇
  • 异构计算
    1篇
  • JAVA
    8篇
兴趣领域 设置
  • 人工智能
    机器学习
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【无标题】

Xilinx FIFO使用总结FIFO是我们在FPGA开发中经常用到的模块,在数据缓存和跨时钟域同步等都会有涉及。在实际工程使用前,我们需要熟悉掌握FIFO IP的配置过程及时序特点。下面对xilinx的FIFO IP在vivado下的配置过程,以及主要信号的时序关系总结如下。其中,FIFO为同步FIFO,位宽为16bit,深度为128。一、配置过程1、首先,选择native类型的FIFO,然后选择common clock block RAM,即采用读写采用相同时钟的块RAM,如果FIFO深度小
转载
发布博客 2022.02.02 ·
78 阅读 ·
0 点赞 ·
0 评论

Verilog +: -:语法

“+:”、"-:"语法看到这个语法的时候是在分析AXI lite 总线源码时碰见的,然后查阅了资料,做出如下解释。1.用处这两个应该算是运算符,运用在多位的变量中,如下:slv_reg0[(byte_index8) +: 8] <= S_AXI_WDATA[(byte_index8) +: 8];2."+:"变量[起始地址 +: 数据位宽] <–等价于–> 变量[(起始地址+数据位宽-1):起始地址]data[0 +: 8] <--等价于--> data[.
转载
发布博客 2022.02.02 ·
129 阅读 ·
0 点赞 ·
1 评论

直方图均衡化

直方图均衡化(Histogram Equalization)是一种增强图像对比度(Image Contrast)的方法,其主要思想是将一副图像的直方图分布变成近似均匀分布,从而增强图像的对比度。直方图均衡化虽然只是数字图像处理(Digital Image Processing)里面的基本方法,但是其作用很强大,是一种很经典的算法。下面,本文会介绍一些直方图均衡化方面的知识和方法,包括以下几个部分:直方图均衡化与对比度增强 直方图均衡化(HE)原理和实现 自适应直方图均衡化(AHE)原理和实现
转载
发布博客 2022.01.30 ·
523 阅读 ·
1 点赞 ·
0 评论

Verilog 与 C 区别和联系,个人理解

1,Verilog 里面变量不叫变量,叫信号。 信号分两类: line 和 buffer。 对应组合逻辑和时序逻辑。要想保存状态,就得用时序逻辑。2,Verilog里面所有变量跟时钟对齐。所以Verilog代码本质是并行运行的。 各信号之间只跟时钟对齐。3,C语言是串行运行的,变量之间的逻辑关系可以通过指令顺序实现依赖。因此,只要跟算法逻辑对应就行了, 不用做专门的变量依赖和逻辑关系管理。例如:当后一条语句需要读一个变量的数据时,可以将待读取变量的状态改变语句放在状态读取语句前面。 4...
原创
发布博客 2021.12.22 ·
1023 阅读 ·
0 点赞 ·
0 评论

2021-07-16

前言人工智能近年来可以说是一门显学. 作为人工智能的一个子集, 机器学习的新成果新应用也是穷出不尽, 各种资料和教程也可谓是汗牛充栋. 然而, 这些资料或多或少给人一种照本宣科, 千篇一律的感觉, 而且常常让初学者读后似懂未懂.在这里, 我会尝试从几个耳熟能详的模型的相似处作为切入点, 穿插相关理论和概念, 希望读者能从中窥视一斑机器学习的原理, 过程和局限.wx+b我们常说, 机器学习有三大任务: 回归, 分类, 聚类. 从某种意义上讲, 实际这三种任务的"目标"和"内涵"是相似的, 区别
转载
发布博客 2021.07.16 ·
119 阅读 ·
0 点赞 ·
0 评论

拉格朗日函数最优化问题

目的:将有约束条件的函数最优化问题通过拉格朗日函数转化为无条件的函数最优化问题。条件极值最优化问题:对于无条件的函数最优化问题,常用的有3种方式:梯度下降:求解一阶导数,其实就是使用泰勒一阶展开逼近最优解 L-BFGS:求解二阶导数,其实是使用泰勒二阶展开逼近 IIS对于有条件约束的函数最优化问题,该怎么求呢?数学上给出了两种求解的方式,下面以求解二元函数的条件极值为例:例:求解二元函数条件下的极值的方法与步骤:方法一 化条件极值为无条件极值方法二 拉格朗...
转载
发布博客 2021.07.15 ·
2158 阅读 ·
0 点赞 ·
0 评论

最优化问题-概述

每一天,我们的生活都面临无数的最优化问题: 上班怎么选择乘车路线,才能舒服又快速的到达公司;旅游如何选择航班和宾馆,既省钱又能玩的开心; 跳槽应该选择哪家公司,钱多、事少、离家近,前台妹子颜值高;买房子应该选在哪里,交通发达有学区,生活便利升值快。可以看出,上面所有的问题都面临无数的选择, 我们会根据自己的偏好对每个选择打一个不同的分数,再从所有的选择中找出最优的一个。这个寻求最优解的过程其实就是最优化问题,我们要打的分数就称为目标函数。最优化问题往往还要面临一定的约束条件,比如对旅行路线的选择,总
转载
发布博客 2021.07.15 ·
1172 阅读 ·
2 点赞 ·
0 评论

np.delete详解

一、函数np.delete(array,obj,axis)二、函数的意思array:需要处理的矩阵obj:需要处理的位置,比如要删除的第一行或者第一行和第二行axis:如果输入为None:array会先按行展开,然后按照obj,删除第obj-1(从0开始)位置的数,返回一个行矩阵。如果输入为0:按行删除如果输入为1:按列删除三、例子1、输入为Noneimport numpy as npa = np.array([[1,2],[3,4],[5,6]])a_1
转载
发布博客 2021.07.11 ·
5847 阅读 ·
3 点赞 ·
0 评论

二值化的图像转化成QImage

之前还做过GIGE相机的raw格式转换为OpenCV格式,一开始觉得很不好下手,但其实图像都会遵循标准的,,不要慌,仔细看文档,看清楚是什么格式后就能发现转换的办法 代码如下[cpp]view plaincopyvoidMainWindow::on_pushButton_clicked() { Matimage; image=imread("test.bmp",CV_LOAD_IMAGE_COLOR);//Readth...
转载
发布博客 2021.07.11 ·
161 阅读 ·
0 点赞 ·
0 评论

PYTHON实现连通域处理函数CV2.CONNECTEDCOMPONENTSWITHSTATS()和CV2.CONNECTEDCOMPONENTS()

标签:OPenCV自学记录OPENCV自学记录(6)——连通域处理函数CV2.CONNECTEDCOMPONENTSWITHSTATS()和CV2.CONNECTEDCOMPONENTS()1、两个函数介绍 1.1什么是连通域 1.2cv2.connectedComponents() 1.3cv2.connectedComponentsWithStats() 2、代码实践 3、总结1、两个函数介绍总得来说,connectedComponents()仅仅创建了一...
转载
发布博客 2021.07.10 ·
1361 阅读 ·
3 点赞 ·
0 评论

OpenCV和matlab中HSV颜色值的区别

这篇文章记录一下在合成数据是遇到的matlab和OpenCV中关于HSV颜色值的区别。HSV颜色空间:色调(H),饱和度(S),亮度(V)。OpenCV中HSV各通道颜色值范围是:H:0-180,S:0-255,V:0-255。matlab中HSV各通道颜色值的范围是:H:[0,1),S:[0,1],V:[0,1]...
转载
发布博客 2021.07.10 ·
120 阅读 ·
0 点赞 ·
0 评论

查看当前python环境_anaconda如何查看并管理python环境

Anaconda是Python的一个开源发行版本,主要面向科学计算,预装了丰富强大的库。使用Anaconda可以轻松管理多个版本的Python环境。Anaconda默认有两个版本,可以选择64位还是32位安装,当你安装了其中一个版本时,系统默认为该版本。同时你可以在已安装的Anaconda版本中添加另一个版本的Python,实现多版本共存。Anaconda可以使用命令行进行操作conda的环境管理conda info -e             查看当前已安装的环境conda create
转载
发布博客 2021.07.04 ·
3766 阅读 ·
2 点赞 ·
0 评论

【opencv-python】视频处理(5) cv2.VideoCapture.grab()函数、cv2.VideoCapture.retrieve()函数

【opencv-python】视频处理(5)一、cv2.VideoCapture.grab()函数二、cv2.VideoCapture.retrieve()函数三、与cv2.VideoCapture.read()函数的联系1.联系2.示例一、cv2.VideoCapture.grab()函数函数cv2.VideoCapture.grab()用来指向下一帧,其语法格式为:retval = cv2.VideoCapture.grab()1如果该函数成功指向下一帧,则返回值 retval 为
转载
发布博客 2021.06.30 ·
2218 阅读 ·
5 点赞 ·
0 评论

Python 字符串前面加u,r,b的含义

1、字符串前加 u例:u"我是含有中文字符组成的字符串。"作用:后面字符串以 Unicode 格式 进行编码,一般用在中文字符串前面,防止因为源码储存格式问题,导致再次使用时出现乱码。2、字符串前加 r例:r"



”  # 表示一个普通生字符串



,而不表示换行了。作用:去掉反斜杠的转义机制。(特殊字符:即那些,反斜杠加上对应字母,表示对应的特殊含义的,比如最常见的”
”表示换行,”\t”表示Tab等。 )应用:常用于正则表达式,对应着re模块。3、字符串前
转载
发布博客 2021.06.28 ·
118 阅读 ·
0 点赞 ·
0 评论

计算机视觉-滤波处理和形态学处理

图像滤波是指尽量保留图像细节特征的情况下对目标图像的噪声进行抑制。其目的有二:提取对象特征作为图像识别的特征模式和消除图像数字化过程中混入的噪声。消除图像中的噪声成分叫做图像的平滑化或滤波操作。信号或图像的能量大部分集中于幅度谱的低频和中频段,而在高频段,有用的信息经常被噪声淹没。故,能够降低噪声影响的滤波器的工作原理是降低高频成分幅度。滤波是将信号中特定波段频率滤除的操作。结合滤波器的工作原理,可以得出“对图像高频段滤波是降噪,对图像低频段滤波是模糊”的结论。线性滤波器的工作原理是
转载
发布博客 2021.05.16 ·
179 阅读 ·
0 点赞 ·
0 评论

matlab strel 函数

strel——structuring element运用各种形状和大小构造元素,基本语法为SE = strel(shape, parameters)shape 是指定希望形状的字符串,parameters 是指定形状信息的一系列参数SE = strel('arbitrary', NHOOD)创建一个任意形状的结构元素,NHOOD是由0和1组成的矩阵,用于指定形状可以用se=strel(NHOOD)简化SE = strel('arbitrary', NHOOD, HEIGHT)HEIGHT是.
转载
发布博客 2021.05.16 ·
3561 阅读 ·
3 点赞 ·
0 评论

verilog中defparam的用法及#的用法

有机会看下defparam的语法了:如下:当一个模块引用另外一个模块时,高层模块可以改变低层模块用parameter定义的参数值,改变低层模块的参数值可采用以下两种方式:  1)defparam 重定义参数  语法:defparam path_name = value ;  低层模块的参数可以通过层次路径名重新定义,如下例:module top ( .....)input....;output....;defparam U1 . Para1 = 10 ;M1 U1 (......
转载
发布博客 2021.03.23 ·
292 阅读 ·
0 点赞 ·
0 评论

verilog 基本语法 {}大括号的使用

{}的基本使用是两个,一个是拼接,一个是复制,下面列举了几种常见用法。基本用法{ }表示拼接,{第一位,第二位…};{{ }}表示复制,{4{a}}等同于{a,a,a,a};所以{13{1‘b1}}就表示将13个1拼接起来,即13’b1111111111111。拼接语法详解即把某些倍号的某些位详细地列出来,中间用逗号分开,最后用大括号括起来表示一个整体信号,例如:{a, b[3:0], c, 3'b100}1也可以写成为:{a, b[3],b[2], b[1],b[0],c, 1'
转载
发布博客 2021.03.22 ·
9698 阅读 ·
9 点赞 ·
0 评论

卷积神经网络图片的尺寸变化及其推导

大部分转自:https://blog.csdn.net/qq_36444039/article/details/103984502笔者以前搭建深度学习模型的时候,对于每一步卷积池化后图片的尺寸和大小很迷茫,不知道如何计算的。这里,我给大家分享几个公式,帮助大家理解。不明白的欢迎在下方留言。1、卷积层(Conv Layer)的输出张量(图像)的大小定义如下:O=输出图像的尺寸。I=输入图像的尺寸。K=卷积层的核尺寸N=核数量S=移动步长P =填充数输出图像尺寸的计算公式如下:上述
转载
发布博客 2021.02.16 ·
1066 阅读 ·
1 点赞 ·
0 评论

openCV_python自带的ANN进行手写字体识别,报错。求助

答:
图片识别算法有问题
回答问题 2020.10.08
加载更多