设一元线性回归方程为,数据样本点为
,
要想使这n个样本点落在一元线性回归方程附近,不妨设误差为,使得没一个样本点落在一元线性回归方程上,因此有
恒成立,所以回归直线应满足的条件是:实际值与回归估计值之间的误差平方和最小,即:
此时令,原问题就转换成求解二元函数极小值问题,分别对
求偏导:
令上两式等于零,即
最终求出两个数值,一元线性回归方程也就拟合出来了。
设一元线性回归方程为,数据样本点为
,
要想使这n个样本点落在一元线性回归方程附近,不妨设误差为,使得没一个样本点落在一元线性回归方程上,因此有
恒成立,所以回归直线应满足的条件是:实际值与回归估计值之间的误差平方和最小,即:
此时令,原问题就转换成求解二元函数极小值问题,分别对
求偏导:
令上两式等于零,即
最终求出两个数值,一元线性回归方程也就拟合出来了。