线性回归之最小二乘法推导

一元线性回归函数:
y = ω x + b y = \omega x+b y=ωx+b
假设有n组[x1,x2,x3…xn],[y1,y2,y3…yn]数据,它们之间的关系为 f ( x ) = ω x + b f(x) =ωx+b f(x)=ωx+b 线性回归的目的之让 f ( x ) f(x) f(x) y y y 之间的差值最小当 ω 和 b \omega和b ωb 取何值的时候二者之间的差值最小.设 E ( ω , b ) Ε_{(\omega,b)} E(ω,b) f ( x ) f(x) f(x) y y y 的差异值 E ( ω , b ) Ε(\omega,b) E(ω,b)为损失函数:
E ( ω , b ) = ∑ i = 1 n ( f ( x ) − y i ) 2 = ∑ i = 1 n ( ω x i + b − y i ) 2 Ε_{(\omega,b)} = \sum_{i=1}^n(f(x)-y_{i})^2 = \sum_{i=1}^n(\omega x_{i}+b-y_{i})^2 E(ω,b)=i=1n(f(x)yi)2=i=1n(ωxi+byi)2
最小二乘法来确定 ω 和 b ω和b ωb 的值因为 E ( ω , b ) Ε_{(\omega,b)} E(ω,b) 为凸函数求其偏导:
∂ E ( ω , b ) ∂ b = ∑ i = 1 n ( ω x i + b − y i ) 2 ∂ b = 2 ∑ i = 1 n ( ω x i + b − y i ) \frac{∂Ε_{(\omega,b)}}{∂b} = \frac{\sum_{i=1}^n(\omega x_{i}+b-y_{i})^2}{∂b} = 2\sum_{i=1}^n(\omega x_{i}+b-y_{i}) bE(ω,b)=bi=1n(ωxi+byi)2=2i=1n(ωxi+byi) = 2 [ ∑ i = 1 n ω x i + ∑ i = 1 n b + − ∑ i = 1 n y i ] =2[\sum_{i=1}^n\omega x_{i} + \sum_{i=1}^nb +-\sum_{i=1}^ny_{i}] =2[i=1nωxi+i=1nb+i=1nyi]
= 2 [ ω ∑ i = 1 n x i + n b − ∑ i = 1 n y i ] =2[\omega\sum_{i=1}^nx_i+nb-\sum_{i=1}^ny_i] =2[ωi=1nxi+nbi=1nyi] x ˉ = ∑ i = 1 n x i n , y ˉ = ∑ i = 1 n y i n \bar{x}=\frac{\sum_{i=1}^nx_i}{n},\bar{y}=\frac{\sum_{i=1}^ny_i}{n} xˉ=ni=1nxi,yˉ=ni=1nyi
∴ ∂ E ( ω , b ) ∂ b = 2 [ ω n x ˉ + n b − n y ˉ ] ∴\frac{∂Ε_{(\omega,b)}}{∂b} = 2[\omega n \bar{x}+nb-n\bar{y}] bE(ω,b)=2[ωnxˉ+nbnyˉ]
= 2 n [ ω x ˉ + b − y ˉ ] =2n[\omega \bar{x}+b-\bar{y}] =2n[ωxˉ+byˉ]
b b b的导数为0
2 n [ ω x ˉ + b − y ˉ ] = 0 2n[\omega \bar{x}+b-\bar{y}] = 0 2n[ωxˉ+byˉ]=0
∵ n > = 1 ∵n>=1 n>=1
∴ ω x ˉ + b − y ˉ = 0 ∴\omega \bar{x} + b - \bar{y} = 0 ωxˉ+byˉ=0
∴ b = y ˉ − ω x ˉ ∴b = \bar{y} - \omega \bar{x} b=yˉωxˉ ω \omega ω求导
∂ E ( ω , b ) ∂ ω = ∑ i = 1 n ( ω x i + b − y i ) 2 ∂ ω = 2 ∑ i = 1 n ( ω x i + b − y i ) x i \frac{∂Ε_{(\omega,b)}}{∂ \omega } = \frac{\sum_{i=1}^n(\omega x_{i}+b-y_{i})^2}{∂ \omega } = 2\sum_{i=1}^n(\omega x_{i}+b-y_{i})x_i ωE(ω,b)=ωi=1n(ωxi+byi)2=2i=1n(ωxi+byi)xi
= 2 [ ∑ i = 1 n ω x i 2 + ∑ i = 1 n b x i − ∑ i = 1 n y i x i ] =2[\sum_{i=1}^n\omega x_i^2 + \sum_{i=1}^nb x_i - \sum_{i=1}^n y_ix_i] =2[i=1nωxi2+i=1nbxii=1nyixi]
= 2 [ ∑ i = 1 n ω x i 2 + ∑ i = 1 n ( y ˉ − ω x ˉ ) x i − ∑ i = 1 n y i x i ] =2[\sum_{i=1}^n\omega x_i^2 + \sum_{i=1}^n (\bar{y} - \omega \bar{x}) x_i - \sum_{i=1}^n y_ix_i] =2[i=1nωxi2+i=1n(yˉωxˉ)xii=1nyixi]
= 2 [ ∑ i = 1 n ω x i 2 + n x ˉ ( y ˉ − ω x ˉ ) − ∑ i = 1 n y i x i ] =2[\sum_{i=1}^n\omega x_i^2 + n\bar{x}(\bar{y}- \omega \bar{x})- \sum_{i=1}^n y_ix_i] =2[i=1nωxi2+nxˉ(yˉωxˉ)i=1nyixi]
= 2 [ ∑ i = 1 n ω x i 2 + n x ˉ y ˉ − n ω x ˉ 2 − ∑ i = 1 n y i x i ] =2[\sum_{i=1}^n\omega x_i^2 +n \bar{x} \bar{y} -n \omega \bar{x}^2- \sum_{i=1}^n y_ix_i] =2[i=1nωxi2+nxˉyˉnωxˉ2i=1nyixi]
= 2 [ ω ( ∑ i = 1 n x i 2 − n x ˉ 2 ) + n x ˉ y ˉ − ∑ i = 1 n y i x i ] =2[\omega (\sum_{i=1}^n x_i^2 - n \bar{x}^2) +n \bar{x} \bar{y} - \sum_{i=1}^n y_ix_i] =2[ω(i=1nxi2nxˉ2)+nxˉyˉi=1nyixi]
ω \omega ω的导数为0
ω ( ∑ i = 1 n x i 2 − n x ˉ 2 ) + n x ˉ y ˉ − ∑ i = 1 n y i x i = 0 \omega (\sum_{i=1}^n x_i^2 - n \bar{x}^2) +n \bar{x} \bar{y} - \sum_{i=1}^n y_ix_i = 0 ω(i=1nxi2nxˉ2)+nxˉyˉi=1nyixi=0
ω = ∑ i = 1 n y i x i − n x ˉ y ˉ ∑ i = 1 n x i 2 − n x ˉ 2 \omega = \frac{\sum_{i=1}^n y_ix_i - n \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 - n \bar{x}^2} ω=i=1nxi2nxˉ2i=1nyixinxˉyˉ
可化简
∵ x ˉ = ∑ i = 1 n x i n ∵\bar{x} = \frac{\sum _{i=1}^n x_i}{n} xˉ=ni=1nxi
∴ ∑ i = 1 n x i = n x ˉ ∴\sum _{i=1}^nx_i = n\bar{x} i=1nxi=nxˉ
∴ ∑ i = 1 n x i 2 − n x ˉ 2 = ∑ i = 1 n x 2 − 2 n x ˉ 2 + n x ˉ 2 ∴\sum_{i=1}^n x_i^2 - n \bar{x}^2 = \sum_{i=1}^n x^2 - 2n\bar{x}^2+n\bar{x}^2 i=1nxi2nxˉ2=i=1nx22nxˉ2+nxˉ2
= ∑ i = 1 n x i 2 − 2 ∑ i = 1 n x i x ˉ + ∑ i = 1 n x 2 = \sum_{i=1}^n x_i^2 - 2\sum_{i=1}^nx_i\bar{x}+\sum_{i=1}^nx^2 =i=1nxi22i=1nxixˉ+i=1nx2
= ∑ i = 1 n ( x i − x ˉ ) 2 =\sum_{i=1}^n(x_i-\bar{x})^2 =i=1n(xixˉ)2
同理可得
∑ i = 1 n y i x i − n x ˉ y ˉ = ∑ i = 1 n y i x i − 2 n x ˉ y ˉ + n x ˉ y ˉ \sum_{i=1}^n y_ix_i - n \bar{x} \bar{y} = \sum_{i=1}^n y_ix_i - 2n\bar{x}\bar{y} + n\bar{x}\bar{y} i=1nyixinxˉyˉ=i=1nyixi2nxˉyˉ+nxˉyˉ
= ∑ i = 1 n y i x i − ∑ i = 1 n x i y ˉ − ∑ i = 1 n y i x ˉ + ∑ i = 1 n x ˉ y ˉ =\sum_{i=1}^ny_ix_i - \sum_{i=1}^nx_i\bar{y}-\sum_{i=1}^ny_i\bar{x}+\sum_{i=1}^n\bar{x}\bar{y} =i=1nyixii=1nxiyˉi=1nyixˉ+i=1nxˉyˉ
= ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) =\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y}) =i=1n(xixˉ)(yiyˉ)
∴ ω = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 ∴\omega = \frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^n(x_i-\bar{x})^2} ω=i=1n(xixˉ)2i=1n(xixˉ)(yiyˉ)
∴ b = y ˉ − ω x ˉ , ω = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 ∴b =\bar{y} - \omega \bar{x}, \omega =\frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^n(x_i-\bar{x})^2} b=yˉωxˉ,ω=i=1n(xixˉ)2i=1n(xixˉ)(yiyˉ)
x ˉ , y ˉ 还 原 可 得 \bar{x} , \bar{y}还原可得 xˉ,yˉ
b = ∑ i = 1 n ( y i − ω x i ) n , ω = ∑ i = 1 n y i x i − ∑ i = 1 n x i y i n ∑ i = 1 n x i 2 + ( ∑ i = 1 n x i ) 2 n b= \frac{\sum_{i=1}^n(y_i - \omega x_i)}{n} , \omega =\frac{ \sum_{i=1}^ny_ix_i-\frac{\sum_{i=1}^nx_iy_i}{n}}{\sum_{i=1}^nx_i^2+ \frac{(\sum_{i=1}^nx_i)^2}{n} } b=ni=1n(yiωxi),ω=i=1nxi2+n(i=1nxi)2i=1nyixini=1nxiyi

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值