A Transformer-based Framework for Predicting Geomagnetic Indices with Uncertainty Quantification
1. Abstract
地磁活动对地球有着至关重要的影响,能够波及航天器和电网系统。地球空间科学家使用一种名为Kp指数的地磁指数来描述地磁活动的总体水平。该指数是地球磁场扰动的重要指标,被美国空间天气预报中心用作可能受扰动影响的用户的警报和预警服务。另一个常用的指数,称为Ap指数,是由Kp指数转换而来的。对Kp和Ap指数的早期和准确预测对于防灾准备和风险管理至关重要。
本文提出了一种名为GNet的深度学习框架,用于对Kp和Ap指数进行短期预测。具体来说,GNet以NASA空间科学数据协调档案馆提供的太阳风参数值的时间序列作为输入,并针对给定的时间点t预测在未来t+w小时(其中w的范围为1到9)的Kp和Ap指数。GNet结合了Transformer编码器块与贝叶斯推理,能够量化预测中的随机不确定性(数据不确定性&#