Advancing Solar Flare Prediction using Deep Learning with Active Region Patches
Georgia State University, Atlanta, GA, USA
Abstract
Solar flares are one of the key space weather phenomena characterized by sudden and intense emissions of radiation from the Sun. The precise and reliable prediction of these phenomena is important due to their potential adverse effects on both space and Earth-based infrastructure. In this paper, we introduce a novel methodology for leveraging shape-based characteristics of magnetograms of active region (AR) patches and provide a novel capability for predicting solar flares covering the entirety of the solar disk (AR patches spanning from -90 ◦ to +90 ◦ of solar longitude). We create three deep learning models: (i) ResNet34, (ii) MobileNet, and (iii)