利用活动区域斑块的深度学习推进太阳耀斑预测

Advancing Solar Flare Prediction using Deep Learning with Active Region Patches

Georgia State University, Atlanta, GA, USA

2406.11054 (arxiv.org)

Abstract

Solar flares are one of the key space weather phenomena characterized by sudden and intense emissions of radiation from the Sun. The precise and reliable prediction of these phenomena is important due to their potential adverse effects on both space and Earth-based infrastructure. In this paper, we introduce a novel methodology for leveraging shape-based characteristics of magnetograms of active region (AR) patches and provide a novel capability for predicting solar flares covering the entirety of the solar disk (AR patches spanning from -90 ◦ to +90 ◦ of solar longitude). We create three deep learning models: (i) ResNet34, (ii) MobileNet, and (iii)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值