SPDF About OMNIWeb Data (nasa.gov)
The data made accessible through this interface are 1-min-averaged, field/plasma data sets shifted to the Earth's bow shock nose(BSN). This "High Resolution OMNI" (HRO) data set involves an interspersal of BSN-shifted ACE, Wind, IMP 8 and Geotail data. The following material describes the content and building of this HRO data set and related data sets.
One min and 5-min solar wind data sets
at the Earth's bow shock nose
Joe King and Natalia Papitashvili, GSFC/SPDF and ADNET Systems, Inc.
目录
ACE magnetic field and plasma data
Geotail magnetic field and plasma data
3a. Determination of the phase front normals (PFN)
3a.1. Technique 1, "Modified" MVA
3a.3 Technique 3, Cross Product (CP)
3a.4 Technique 4, JK/NP Combination of Techniques 2 and 3.
3a.5 Technique 5, DW Combination of Techniques 2 and 3.
3b. Mechanics of the time shifting
4. Descriptions of the new data products.
4a. Spacecraft-specific data sets
4b. High-Resolution OMNI data set
Appendix 1. Cross-spacecraft Comparisons
Flow direction angle comparisons
Density Comparisons and Temperature
Appendix 2. Cross-Normalizations
Appendix 3. Despike Algorithms
Appendix 4. Determination of bow shock nose location
Appendix 5. Computation of 1-Minute & 5-minute Averages
Appendix 6. Prioritization of Sources for inclusion in OMNI
1. Introduction
This note describes the building and contents of several 1-min- and 5-min resolution, solar wind magnetic field and plasma data sets time-shifted to the Earth's bow shock nose. Data from the ACE, Wind and IMP 8 spacecraft were processed in 2005-6, while Geotail data were added later, in 2007. Initially the data were for 1995 to near-current. In 2009, the IMP 8 shifted data were extended back in time to 11/04/1973, shortly after launch. Also in 2009, we added GOES fluxes of protons above 10, 30 and 60 MeV to 5-min OMNI. These products are primarily intended to support studies of the effects of solar wind variations on the magnetosphere and ionosphere. In addition, we address 1998-2000 1-min ACE data sets shifted using various techniques to the Wind location.
本说明描述了几种时间平移至地球弓激波前端锥位置的1分钟和5分钟分辨率太阳风磁场及等离子体数据集的构建过程与内容。2005-2006年处理了ACE、Wind和IMP 8航天器数据,2007年补充了Geotail数据。初始数据覆盖1995年至近实时,2009年将IMP 8平移数据回溯至1973年11月4日(发射后不久),同年还在5分钟OMNI数据中加入了GOES卫星10、30和60 MeV以上质子通量数据。这些数据集主要用于研究太阳风变化对磁层和电离层的影响,同时包含1998-2000年采用不同方法平移至Wind位置的1分钟ACE数据。
Time shifting is based on the assumption that solar wind magnetic field values observed by a spacecraft at a given time and place lie on a planar surface (a "phase front") convecting with the solar wind, and that the same values will be seen at a different place at the time that the phase front sweeps over that location. A key element of the time shifting is use of the phase front normal (PFN) directions, which are to be determined individually for each input 15-16 sec magnetic field observation by analysis of it and its near neighbors. We identify and compare results of two distinct PFN determination analysis techniques (minimum variance and cross products) and two separate combinings of these, for a total of four shift techniques.
时间平移基于以下假设:
航天器在特定时空观测到的太阳风磁场值位于随太阳风对流的平面"波前"上,当该波前到达新位置时将重现相同数值。平移核心是使用波前法向(PFN)方向——需对每15-16秒的磁场观测值及其邻近数据单独分析确定。本数据集比较了两种PFN确定技术(最小方差法和叉积法)及两种组合方案,共形成四种平移方法。
The family of products introduced herein consist of
(a) 1-min averaged 1998-2000 ACE magnetic field and plasma data shifted to the Wind location by each of the four shift techniques, along with 1-min unshifted Wind averages, with which interested persons can make independent judgements on the relative effectiveness of the various shift techniques,
(b) 1-min and 5-min averaged ACE (1998-present), Wind (1995-present), IMP 8 (1973-2000) and Geotail (1995-2006) magnetic field and plasma data sets shifted to the Earth's bow shock nose,
(c) a 1-min spacecraft-interspersed data set at the bow shock nose that we call the High Resolution OMNI (HRO) data set and
(d) a 5-min averaged version of HRO having GOES proton fluxes appended.
Time tags in records of all these products are target-arrival times and not observation times.
本系列数据集包含:
(a) 1998-2000年ACE磁场和等离子体1分钟均值数据(四种平移方法移至Wind位置),附带未平移的1分钟Wind均值数据,供评估不同平移方法效果;
(b) 平移至弓激波前端锥的1/5分钟均值数据:ACE(1998-今)、Wind(1995-今)、IMP 8(1973-2000)、Geotail(1995-2006);
(c) 弓激波前端锥位置1分钟混合航天器数据(高分辨率OMNI,HRO);
(d) 附加GOES质子通量的5分钟HRO版本。
所有数据时间标签均为目标抵达时间而非观测时间。
This note addresses in sequence: (a) the input data sets and their preparations, (b) the time shifting used, including discussion of the multiple PFN determination techniques available and including consideration and handling of "out-of-sequence" arrivals, (c) the building of 1-min averages from the shifted 15-16 sec IMF values and shifted 1-2 min plasma values, (d) discussion of the various data sets created (spacecraft-specific and the spacecraft- interspersed HRO), including their record formats and meanings of each word in the records, (e) results of analysis of the 1998-2000 Wind data and ACE data shifted to Wind for predictability of IMF and plasma variations at one point, given observations elsewhere, as a function of the two-point separation vector, of the solar wind state (variation level, fast or slow, etc.), and of the PFN determination technique.
本说明依次阐述:
(a) 输入数据及预处理;
(b) 时间平移方法(含多种PFN确定技术及"乱序"数据处理);
(c) 从平移后的15-16秒IMF值和1-2分钟等离子体值构建1分钟均值;
(d) 各类数据集(单航天器与混合HRO)的记录格式及字段含义;
(e) 1998-2000年Wind数据与平移至Wind的ACE数据分析结果(研究两点分离向量、太阳风状态与PFN技术对IMF/等离子体变化预测的影响)。
In addition, a series of Appendices address (f) interspacecraft comparisons of magnetic field and plasma parameter values for finding systematic differences and parameter cross-normalization used in interspersing data from three spacecraft, (g) selection criteria for which data to use in High Resolution OMNI when data from multiple spacecraft are available for a given interval.
附录部分包含:
(f) 航天器间磁场/等离子体参数系统差异比较及交叉归一化方法;
(g) 多航天器数据重叠时段的高分辨率 OMNI 数据遴选标准。
1a. Data availability
The table below identifies the dates for which different parameters of high res. OMNI data are available.
IMF : interplanetary magnetic field
YYYY DDD - YYYY DDD MM/DD Parameters
---------------------------
1981-01-01 (001) - 1994-12-31 (365) IMF (from IMP8 only)
1981-01-01 (001) - 1994-12-31 (365) Plasma (from IMP8 only)
---------------------------------------
1995-01-01 (001) - 2025-03-05 (064) IMF and Plasma (from IMP8, ACE, Wind- pla_KP)
1995-01-01 (001) - 2024-12-26 (361) IMF and Plasma (from IMP8, ACE, Wind- pla_def.)
1988-01-01 (001) - 1988-06-30 (182) Final AE, AL, AU indexes
1988-07-01 (183) - 1989-12-31 (365) No AE, AL,AU-indexes (except March of 1989)
1990-01-01 (001) - 2019-12-31 (365) Provisional AE, AL, AU indexes
2024-05-10 (131) - 2024-05-14 (135) Provisional AE, AL, AU indexes
2024-12-01 (336) - 2025-03-09 (068) Quick look AE, AL, AU indexes
1981-01-01 (001) - 2025-02-28 (059) Provisional SYM/D, SYM/H, ASY/D, ASY/H indexes
1986-01-01 (001) - 2020-03-03 (063) Fluxes from Goes, for 5-min res. only
1981-01-01 (001) - 2023-12-31 (365) PCN index (Definitive,DTU,Denmark)
---------------------------------------------------------------------
Time span of the Spacecraft Specific Data shifted to bow shock nose
Geotail: 1995-03-15 - 2006-12-31(365)
IMP-8: 1973-11-04 - 2000-06-09(161)
ACE: 1998-02-05 - 2022-02-27(058)
Wind: 1995-01-01 - 2025-03 05(064) [ Based on SWE_KP plasma data ]
Wind: 1995-01-01 - 2024-12-26(361) [ Based on SWE_definitive plasma data ]
---- Shifted but not in OMNI---
Wind: 1995-01-01 - 2025-02-18(049) [ Based on 3DP plasma data ]
DSCOVR 2016-06-08 - 2019-02-11(143)
Proton Fluxes from GOES (>10 MeV, >30 MeV, >60 MeV ) are taken from https://satdat.ngdc.noaa.gov/sem/goes/data/avg/. See near end of Section 2 below for further detail.
Minute AE, AL, AU and SYM/D, SYM/H, ASYS/D, ASYS/H indexes have been computed at WDC for Geomagnetism at U. Kyoto:
https://wdc.kugi.kyoto-u.ac.jp/aeasy/
PC(N) is the Polar Cap definitive Index determined from the North polar cap station at Thule,Greenland.
at the National Space Institute (DTU Space), Technical Universtiy of Denmark:
https://ftp.space.dtu.dk/WDC/indices/pcn/PCN_definitive/.
2. Input Data Preparation
We have used publicly available ACE, Wind, IMP 8 and Geotail magnetic field and plasma in building the 1-min and 5-min data products described herein.
ACE (Advanced Composition Explorer) was launched August 25, 1997, and continues to provide magnetic field, plasma and energetic particle data from a ~180 day L1 orbit having X, Y, and Z (GSE) ranges of 220 to 250 Re, -40 to +40 Re, and -24 to +24 Re. The ACE home page is at Advanced Composition Explorer (ACE) Home Page.
ACE于1997年8月25日发射,持续从L1轨道(约180天轨道周期,GSE坐标系下X方向220-250Re,Y方向±40Re,Z方向±24Re)提供磁场、等离子体及高能粒子数据。
Wind was launched November 1, 1994, as part of NASA's contribution to the International Solar Terrestrial Program. It continues to obtain magnetic field, plasma, energetic particle and plasma wave data. Since mid-2004, it has been in an L1 orbit with excursions in Y(GSE) between +/- 100 Re. It had multiple earlier phases, including an interval spanning the last third of 2000 through mid 2002 with Y(GSE) excursions in excess of 200 Re and an interval in late 2003 and early 2004 in orbit about the Lagrange point on the anti-sunward side of Earth. The Wind home page is at WIND Spacecraft.
Wind卫星作为NASA对国际日地物理计划的贡献,于1994年11月1日发射,持续获取磁场、等离子体、高能粒子及等离子体波数据。2004年中期起驻留L1轨道(Y方向±100Re),早期阶段包括2000年末至2002年中的Y方向超200Re探测,以及2003年末至2004年初在地球背阳面拉格朗日点的轨道运行。
IMP 8 was launched October 26, 1973, into a low eccentricity Earth orbit. Apogee and perigee distances have been in the ranges 38-45Re and 28-34 Re. On average IMP 8 is out of the solar wind for about 5 days of every 12.5 day orbit. The IMP 8 magnetometer failed June 10, 2000. Data from the MIT plasma instrument and from three energetic particle detectors were acquired until October, 2006. The IMP 8 web page is at IMP-8 Project Information.
IMP 8于1973年10月26日发射进入低偏心率地球轨道(远地点38-45Re,近地点28-34Re),平均每12.5天轨道周期约有5天处于太阳风之外。其磁强计于2000年6月10日失效,MIT等离子体探测器和三个高能粒子探测器持续工作至2006年10月。
Geotail was launched July 24, 1992, into an eccentric orbit with apogee deep in the geotail. In early 1995, the Geotail orbit was adjusted to about 10 x 30 Re, and then to 9 x 30 Re in 1997 where it continues today (2008). In this orbit, Geotail has annual solar wind "seasons" with apogee local times on or near the Earth's dayside, and it has solar wind intervals during each ~5 day orbit of the solar wind seasons.
Geotail于1992年7月24日发射进入远地点深入磁尾的偏心轨道。1995年初轨道调整为10×30Re,1997年改为9×30Re并保持至今(2008年)。在该轨道上,Geotail每年存在"太阳风季"(远地点位于地球昼侧),每个约5天的轨道周期内均可获取太阳风数据。
The web pages for the contributing investigations are: Magnetic field: ACE: ACE MAG Level 2 Data Wind: https://wind.nasa.gov/data/mfi/ IMP 8: Index of /pub/data/imp/imp8 Geotail: GEOTAIL Spacecraft Plasma: ACE: ACE SWEPAM Level 2 Data Wind: Index of /pub/data/wind/swe/ascii/2-min IMP 8: Index of /pub/data/imp/imp8 Geotail: Geotail Comprehensive Plasma Instrument Observations The input data were pulled from: Magnetic field ACE: ACE MAG Level 2 Data ( 16-sec.) Wind: Index of /pub/data/wind/mfi/ascii/15sec_ascii IMP 8: Index of /pub/data/imp/imp8/mag/15s_ascii_v3 Geotail: SPDF - Coordinated Data Analysis Web (CDAWeb) (GE_EDB3SEC_MGF) Plasma ACE: ACE SWEPAM Level 2 Data ( 64-sec.) Wind (Kp): Index of /pub/data/wind/swe/ascii/swe_kp_unspike Wind (Def.): Index of /pub/data/wind/swe/ascii/2-min IMP 8: Index of /pub/data/imp/imp8/plasma_mit/sw_msheath_min Geotail: SPDF - Coordinated Data Analysis Web (CDAWeb) (GE_H0_CPI) Key persons for these data sets include: Magnetic field: ACE: Chuck Smith (UNH), Norman Ness (Bartol) Wind: Ron Lepping (GSFC), Adam Szabo (GSFC), Norman Ness IMP 8: Adam Szabo, Ron Lepping, Norman Ness Geotail: Tsugunobu Nagai (Tokyo Inst. Tech.), S. Kokobun Plasma: ACE: Dave McComas (SWRI), Ruth Skoug (LANL) Wind: Al Lazarus (MIT), Justin Kasper (MIT), Keith Ogilvie (GSFC) IMP 8: Al Lazarus, John Richardson (MIT) Geotail: Bill Paterson (Hampton U.), L. Frank & K. Ackerson (U. Iowa)
ACE magnetic field and plasma data
"Level 2" 16-s magnetic field data and 64-s plasma data were pulled from the ACE Science Center. (Credit goes to Andrew Davis and the ASC team for a very effective data management and distribution facility). The field and plasma data there start on September 2, 1997, and February 5, 1998, respectively. Owing to the critical need for plasma flow speed data in time shifting magnetic field data to the bow shock nose or elsewhere, we limit the coverage of ACE data in our new data products to February 5, 1998, and later.
ACE磁场与等离子体数据
本数据从ACE科学中心获取"Level 2"级16秒磁场数据与64秒等离子体数据。磁场数据起始于1997年9月2日,等离子体数据起始于1998年2月5日。由于磁场数据时间平移至弓激波前端锥位置必须依赖等离子体流速参数,本数据集仅收录1998年2月5日及之后的ACE数据。
Wind magnetic field data
The Wind magnetic field data are standardly produced by the instrument team at 3-s, 1-m and 1-h resolutions. Because we apply phase front normal determination algorithms to 15.36-s IMP magnetic field data and to 16-s ACE data, we form 15-s averages from the available 3-s data to have similarly resolved Wind magnetic field data as input.
The Wind magnetic field data are standardly available at 3-sec resolution with no discrimination for orbit phase, in particular, for solar wind vs. non-solar wind phases. We have filtered at hourly resolution the time- continuous 3-sec data against the Wind bow shock crossing identifications made by the Wind magnetometer team and available at Bow Shock Crossings to give a solar-wind-only input data set. We have made our own identifications of the few crossings that occurred after the October, 2003, end of the Wind team's list.
In October 2011, the Wind/MFI team finished the reprocessing of all MFI data. Among other things, well-determined Bz offset values were used. The new MFI data were inserted into High Resolution OMNI when they became available, replacing the earlier MFI data. The new data were used to re-determine solar wind phase front normals used in shifting data.
There are rare spikes in the Wind magnetometer data. We have taken a simple approach to eliminating most of these by rejecting any 3-sec record with a magnetic field magnitude or component in excess of 70 nT.
Wind磁场数据
Wind卫星磁场数据由仪器团队标准发布为3秒、1分钟和1小时三种分辨率。为保持与IMP 8卫星15.36秒数据及ACE卫星16秒数据的处理一致性,本数据集将原始3秒数据整合为15秒平均值作为输入数据源。
标准发布的3秒分辨率Wind磁场数据未区分轨道相位(特别是太阳风与非太阳风相位)。本数据集基于Wind磁强计团队提供的弓激波穿越标识(参见弓激波穿越数据库),以小时分辨率对连续3秒数据进行过滤,构建了纯太阳风相位数据集。对于2003年10月之后发生的少量穿越事件,本数据集自主进行了标识。
2011年10月,Wind/MFI团队完成全部磁场数据的重处理工作,其中重点修正了Bz偏移值。新版MFI数据发布后立即更新至高分辨率OMNI数据集,替代旧版本数据,并重新计算了用于数据时间平移的太阳风波前法向矢量。
针对Wind磁强计数据中偶发的尖峰噪声,本数据集采用简易阈值法进行剔除——任何磁场总强度或分量超过70nT的3秒记录均被剔除。
Wind/SWE plasma data
Wind/SWE plasma parameter data are available at ~92-s resolution in three versions corresponding to three approaches to their production from underlying distribution functions. There are "key parameter" data, non-linear fits-based data (fits assumed convecting bimaxwellian distributions), and anisotropic moments-based data. These are discussed at the MIT Wind/SWE web page cited above. The latter two are further discussed in Justin Kasper's dissertation whose most salient parts are web-accessible at thesis.pdf. Finally, "physics-based" tests of the goodness of the nonlinear fits (NLF)-based velocities (~0.16% in speed, ~3 deg in direction), densities (~3%)and temperatures (~8%) are discussed in Kasper et al. (2006).
The NLF data and the anisotropic moments-based data are available to within several weeks of the current date, date of availability of Wind magnetic field version 4 data. The SWE KP data, on the other hand, are typically available to within several weeks of the current date. Given this and given the urging of the MIT plasma team to use the very good and more robust KP data, we have chosen to use the KP data in our high resolution OMNI data set.
But given that it was the NLF data for which the relatively small uncertainties cited above were determined, we shall normalize the KP density and temperature values to equivalent NLF values in the spacecraft-interspersed HRO data set. This point is further discussed and quantified in Appendices 1 and 2 addressing comparisons and cross-normalizations of the available multi-spacecraft data.
As for the Wind magnetic field data, the SWE KP data are available with no discrimination for orbit phase. We have extracted a solar wind-only set of SWE KP data by again filtering at hourly resolution against the Wind bow shock crossing identifications cited above.
The SWE KP data are initially computed and loaded to CDAWeb. The SWE team at MIT improves this product by passing it through a despiking routine that compares a value with the median of three points (the point being tested and its immediate predecessor and follower). Some spikes elude detection. We have run a further despiking routine requiring (to be a non-spike) that the difference between a parameter value and the mean of the two preceding and two following values should be less than four times the standard deviation in that mean or that that difference relative to the mean should be less than some (parameter-dependent) value. This is further discussed in Appendix 3.
Wind/SWE等离子体参数数据
Wind/SWE等离子体参数数据以约92秒分辨率提供三种版本,对应于从基础分布函数生成数据的三种方法。包括"关键参数"数据、基于非线性拟合的数据(假设为对流双麦克斯韦分布)以及基于各向异性矩的数据。这些数据在之前引用的MIT Wind/SWE网页中有讨论。后两种数据在Justin Kasper的论文中有进一步讨论,其最相关的部分可通过thesis.pdf在线获取。最后,基于非线性拟合(NLF)数据的物理验证测试显示其速度误差(~0.16%大小,~3度方向)、密度误差(~3%)和温度误差(~8%),这些在Kasper等人(2006)的研究中进行了讨论。
NLF数据和基于各向异性矩的数据通常在Wind磁场第4版数据可用后的几周内可获得。而SWE KP数据通常可以在当前日期几周内获得。考虑到这一点,以及MIT等离子体团队强烈建议使用质量更好、更稳健的KP数据,本数据集选择在高分辨率OMNI数据集中使用KP数据。
但由于上述相对较小的不确定性是针对NLF数据确定的,本数据集将在航天器交叉的HRO数据集中将KP密度和温度值归一化为等效的NLF值。这一点在附录1和附录2中有进一步讨论和量化,这些附录讨论了可用多航天器数据的比较和交叉归一化。
与Wind磁场数据一样,SWE KP数据不区分轨道相位。本数据集再次根据上述引用的Wind弓激波穿越标识,以小时分辨率过滤,提取了仅包含太阳风的SWE KP数据集。
SWE KP数据最初计算并加载到CDAWeb。MIT的SWE团队通过一个去尖峰程序改进该产品,该程序将某个值与三个点的中位数进行比较(被测试点及其前后相邻点)。有些尖峰未被检测到。本数据集运行了进一步去尖峰程序,要求(对于非尖峰点)参数值与前后两个点均值的差异应小于该均值标准差的四倍,或该差异相对于均值应小于某个(参数相关的)值。这一点在附录3中有进一步讨论。
IMP 8 magnetic field data
IMP 8 magnetic field data have long been available at 15.36 sec resolution (cf. imp8/mag/15s) in a data set that makes no distinction between the solar wind and non-solar wind phases of the IMP orbit. We have used the IMP 8 bow shock crossing information at MULTIPLE SPACECRAFT BOW SHOCK CROSSINGS DATABASE to separate, at 1-minute resolution, the solar wind and non solar wind phases of the IMP orbit to ensure that only IMP 8 solar wind magnetic field data are included in the products described herein.
There are occasional data spikes in the 15.36 sec data. We have hopefully eliminated most if not all of these by applying the spike finder software discussed in Appendix 3.
As noted above, the IMP data in the products discussed in these notes run only to the June 10, 2000, failure of the IMP 8 magnetometer.
IMP 8磁场数据
IMP 8磁场数据IMP 8磁场数据长期以来以15.36秒分辨率提供(参见 /pub/data/imp/imp8/mag/ 15s_ascii_v3 目录),该数据集未区分IMP轨道中的太阳风和非太阳风阶段。本数据集使用MULTIPLE SPACECRAFT BOW SHOCK CROSSINGS DATABASE中的IMP 8弓激波穿越信息,以1分钟分辨率分离IMP轨道的太阳风和非太阳风阶段,确保本文描述的产品中仅包含IMP 8太阳风磁场数据。
15.36秒数据中偶尔会出现数据尖峰。通过应用附录3中讨论的尖峰查找软件,希望已经消除了大部分(如果不是全部)这些尖峰。
如上所述,本文讨论的产品中的IMP数据仅包含到2000年6月10日IMP 8磁强计故障前的数据。
IMP 8 plasma data
Plasma parameters from the MIT Faraday cup are available at ~1 min resolution (cf. Final MIT 1-min SW PLASMA DATA FROM IMP-8 Final MIT 1-min ). Parameter values as determined both by non-linear fitting to assumed convecting Maxwellian distributions and moments are available. As in earlier work, we use the non-linear fit-based data, as these are believed by the MIT team to be the more reliable. (Note that readers may compare the fit-based and moment-based parameter values using the interface at Scatter Plot IMP Fit and MOM min plasma data.
This data set has data from both the solar wind and magnetosheath phases of the IMP 8 orbit. However, each record has an MIT-assigned flag indicating whether the data definitely are, or are not, from the solar wind, or whether they may be from solar wind or magnetosheath. We have used this flag to eliminate from the products discussed in this documentation any data not tagged as being definitely in the solar wind.
There are some spikes in the IMP 8 plasma data. To eliminate most of these, we have applied the spike finder software discussed in Appendix 3 to the data. However, because the software assumes that the first two and last two data points of every interval not having a data gap in excess of one hour are good data, we have visually scanned plots of data after the application of the spike finder software, and have identified and eliminated a few extra points as being likely bad points.
The IMP 8 plasma flow elevation angle has long been recognized as having a ~2 deg offset. This is further discussed in Appendix 1. We have not taken this bias out of the data of the products discussed herein.
IMP 8等离子体数据
来自MIT Faraday cup的等离子体参数以约1分钟分辨率提供(参见Final MIT 1-min SW PLASMA DATA FROM IMP-8)。参数值既可通过假设对流麦克斯韦分布的非线性拟合确定,也可通过矩分析确定。与之前的工作一样,本数据集使用基于非线性拟合的数据,因为MIT团队认为这些数据更可靠。(注意:读者可以使用Scatter Plot IMP Fit and MOM min plasma data界面比较基于拟合和基于矩的参数值)
该数据集包含IMP 8轨道太阳风和磁鞘两个阶段的数据。然而,每条记录都有一个MIT分配的标志,指示数据是否明确来自太阳风,或明确不来自太阳风,或可能来自太阳风或磁鞘。本数据集使用此标志从本文档讨论的产品中消除了任何未被明确标记为太阳风的数据。
IMP 8等离子体数据中存在一些尖峰。为了消除大部分尖峰,本数据集已将附录3中讨论的尖峰查找软件应用于数据。然而,由于该软件假设每个数据间隔(间隔不超过一小时)的前两个和后两个数据点是良好的数据,本数据集在应用尖峰查找软件后,通过目视检查数据图,识别并消除了少数可能是坏点的额外数据点。
IMP 8等离子体流仰角长期以来被认为存在约2度的偏移。这一点在附录1中有进一步讨论。本数据集未从本文讨论的产品数据中消除此偏差。
Geotail magnetic field and plasma data
First, we created 15-s averaged magnetic field averages from 3-sec values for input- compatibility with ACE, Wind and IMP IMF data used. Second, we determined the principal time intervals during which Geotail was beyond the Earth's bow shock, in the solar wind. This process, which does not distinguish foreshock intervals from non-foreshock solar wind intervals, is extensively discussed at spdf.gsfc.nasa. Our despiking of Geotail magnetic field and plasma data is also described in this readme file.
The despiked, 15-s, solar-wind-only magnetic field data set is accessible from omniweb.gsfc.nasa.
We used CPI plasma data rather than Geotail LEP plasma data as the former seemed to have cleaner solar wind parameter values and were more immediately accessible to us.
CPI despiked plasma data also available at omniweb.gsfc.nasa.
As we were doing this work, the magnetometer PI team was working to reprocess its data using more definitive Bz offset values. As of this date (February 5, 2008) we had not received reprocessed data. So we have done our Bz corrections using the expectation that, when averaged over a year, the Bz component in geocentric solar ecliptic coordinates should be within 0.1 of zero. It is possible that one day our new Geotail data sets and multi-spacecraft OMNI data sets will incorporate the not-yet-available reprocessed data of the PI team.
Geotail磁场和等离子体数据
首先,本数据集从3秒值创建了15秒平均磁场值,以便与使用的ACE、Wind和IMP IMF数据输入兼容。其次,本数据集确定了Geotail位于地球弓激波之外、处于太阳风中的主要时间间隔。
此过程不区分前震区间和非前震太阳风区间,详细讨论见spdf.gsfc.nasa。
本数据集对Geotail磁场和等离子体数据的去尖峰处理也在该readme文件中描述。
去尖峰后的15秒太阳风专用磁场数据集可从omniweb.gsfc.nasa 获取。
本数据集使用CPI等离子体数据而非Geotail LEP等离子体数据,因为前者似乎具有更干净的太阳风参数值,且更容易获取。
CPI去尖峰等离子体数据也可从https://omniweb.gsfc.nasa.gov/ftpbrowser/geotail_pla_cpi.html获取
本数据集进行此项工作时,磁强计PI团队正在使用更确定的Bz偏移值重新处理其数据。截至本日期(2008年2月5日),本数据集尚未收到重新处理的数据。因此,本数据集基于以下预期进行了Bz校正:在地心太阳黄道坐标系中,Bz分量按年平均值应在0.1以内。未来某天,本数据集的新Geotail数据集和多航天器OMNI数据集可能会纳入PI团队尚未提供的重新处理数据。
GOES energetic proton fluxes
Fluxes of protons above 10, 30 and 60 MeV, as measured by NOAA's geosynchronous GOES spacecraft are included in 5-minute OMNI. Data from the following spacecraft were used for the indicated years: GOES 7, 1995; GOES 8, 1996-2002; GOES 10, 2003; GOES 11, 2004-2010; GOES 13, 2011 and later. Data are as taken from satdat.ngdc.noaa except that for GOES 13, where separate fluxes are given at NGDC for eastward- and westward-looking sensors. For GOES 13, we have averaged these two fluxes for inclusion in 5-min OMNI. To view separate eastward- and westward-looking fluxes, and their ratios, see the FTPBrowser interface at omniweb.gsfc.nasa. Principal Investigator for the GOES energetic particle instruments is currently T. Onsager, and key responsible NGDC person is D. Wilkinson.
GOES高能质子通量
由NOAA地球同步轨道GOES航天器测量的10、30和60 MeV以上质子通量已被纳入5分钟OMNI数据集。各年份使用的航天器数据如下:GOES 7(1995年);GOES 8(1996-2002年);GOES 10(2003年);GOES 11(2004-2010年);GOES 13(2011年及以后)。除GOES 13外,数据均取自 satdat.ngdc.noaa 。对于GOES 13,NGDC分别提供了向东和向西探测器的通量数据,本数据集已对这两个通量取平均值后纳入5分钟OMNI数据集。如需查看单独的向东/向西通量及其比值,请访问FTPBrowser界面:omniweb.gsfc.nasa。GOES高能粒子探测器当前首席研究员为T. Onsager,NGDC主要责任人为D. Wilkinson。
Extra notes
Data providers may occasionally create replacement versions of their data. In such cases, we replace the superseded data in OMNI with the newer data values, and typically make note that this has happened at ow_news. Such changes are relatively rare are typically involve only small parameter value changes.
We sometimes refer to "15-s" input magnetic field data throughout these pages. Readers should appreciate this is a shorthand notation for 16-s ACE data, 15-s Wind and Geotail data and 15.36-s IMP data.
额外说明
数据提供方可能偶尔会发布替换版本的数据。在此情况下,本数据集会用新数据替换OMNI中被取代的数据,并通常在ow_news上注明更新情况。此类变更相对罕见,通常仅涉及微小的参数值调整。
本数据集在文档中多处使用"15秒"来指代输入磁场数据。读者应注意这实际上是以下数据的简称:ACE的16秒数据、Wind和Geotail的15秒数据,以及IMP的15.36秒数据。
3. Time shifting of data
To best support solar wind - magnetosphere coupling studies, it is desired to time-shift solar wind magnetic field and plasma data from their location of observation, which may be an hour upstream of the magnetosphere and several tens of Re or more removed from the Earth-sun line, to a point close to the magnetosphere. We choose this point to be the bow shock nose. In addition, to assess the goodness of such shifts, we separately shift ACE data to Wind (by each of several shift techniques) and compare the shifted ACE data and in situ Wind data.
Given the availability of data on a specific solar wind magnetic field or plasma parameter P as a function of time t at the location Ro of an observing spacecraft, i.e., P(t, Ro), it is desired to infer values of this parameter at some displaced location Rd, i.e., P(t', Rd). The key underlying assumptions enabling estimation of the time shift, Δt = t'-t, between observation of the parameter at Ro and t and arrival of this value/variation at Rd at t', is that solar wind variations are organized in series of phase fronts (flat planes) that convect with the solar wind velocity V. Curvature of variation surfaces is ignored and propagation of these phase fronts relative to the solar wind flow is ignored. The unphysical interpenetration of these phase fronts is discussed later. Thus the time shift equation is Δt = n · (Rd - Ro)/n · V, where n is the variation phase front normal (PFN) and where "·" is the normal dot or scalar product of two vectors.
为最佳支持太阳风-磁层耦合研究,需要将太阳风磁场和等离子体数据从其观测位置(可能位于磁层上游一小时处,且偏离日地连线数十Re或更远)时间平移至靠近磁层的位置。本数据集选择弓激波前端锥作为该目标点。此外,为评估此类平移的准确性,本数据集分别采用多种平移技术将ACE数据平移至Wind位置,并将平移后的ACE数据与Wind原位观测数据进行对比。
给定某太阳风磁场或等离子体参数P在观测航天器位置Ro处随时间t的变化关系 P(t,Ro),需要推断该参数在位移位置Rd处的值 P(t',Rd)。计算时间平移量 Δt=t'-t 的关键假设是:太阳风变化由一系列随太阳风速度V对流的平面波前(相位前沿)构成。该假设忽略了波前曲率及其相对于太阳风流的传播特性(波前相互穿透的非物理性将在后文讨论)。因此时间平移公式为:Δt=n·(Rd-Ro)/n·V,其中n为变化波前法向(PFN),"·" 表示向量点积。
The target Rd to which we shall shift ACE, Wind, IMP 8 and Geotail data is the bow shock nose. This will best support future solar wind - magnetosphere coupling studies. We use the field and plasma parameters determined at a given time, and the bow shock model of Farris and Russell (1994) with the magnetopause model of Shue et al (1997), to determine where the bow shock will be when the phase front reaches it. See Appendix 4 for a discussion of these models. We include solar wind flow aberration associated with Earth's ~30 km/s orbital motion about the sun in bow shock nose location determination.
It is recognized that this is a very simplified approach, neglecting finite response times of the magnetosphere to solar wind variations, that may introduce some error. However, except for extreme excursions in solar wind parameters, the bow shock will not move enough to introduce significant uncertainty in the timing of arrival of solar wind structures observed upstream. (Uncertainties connected with other factors such as planarity of features and the interpenetration of variation phase planes are larger and affect the parameter profiles and not merely the timing of arriving plasma.)
The bow shock location to which the data are shifted is included in the output data records, among many other parameters.
In addition to shifting data to the bow shock nose, we shall also shift ACE data, by each of four techniques, to the location of the Wind spacecraft so that we can assess the predictability of solar wind variations as a function of the shift technique, the observer-target separation geometry, the variation level in the solar wind, and the nature of the flow (e.g., fast vs. slow).
There was no shifting of GOES energetic particle fluxes.
本数据集将ACE、Wind、IMP 8和Geotail数据统一平移至弓激波前端锥位置,该选择最能支持未来太阳风-磁层耦合研究。利用特定时刻确定的场和等离子体参数,结合Farris和Russell(1994)的弓激波模型与Shue等人(1997)的磁层顶模型,可确定波前抵达时的弓激波位置(模型讨论见附录4)。在确定弓激波前端锥位置时,本数据集考虑了地球绕日轨道运动(约30 km/s)导致的太阳风流畸变。
需注意这是高度简化的方法,忽略了磁层对太阳风变化的有限响应时间可能引入的误差。但除太阳风参数的极端变化外,弓激波位移量不足以对上游观测到的太阳风结构抵达时序产生显著不确定性(与波前平面性及波前相互穿透等因素相关的不确定性更大,这些因素影响参数剖面而不仅是等离子体抵达时序)。
输出数据记录中包含数据所平移至的弓激波位置信息及其他多项参数。
除平移至弓激波前端锥外,本数据集还采用四种技术将ACE数据平移至Wind航天器位置,从而评估太阳风变化的可预测性(作为平移技术、观测者-目标分离几何、太阳风变化水平及流动特性等因素的函数)。
GOES高能粒子通量未进行任何平移处理。
3a. Determination of the phase front normals (PFN)
Minimum variance analysis (MVA) has long been used to determine normals to discontinuity planes in the solar wind magnetic field. See for example Sonnerup and Cahill, 1968. In this approach, a 3x3 variance matrix
M_ij = Σ(B_i(t)*B_j(t))/N - ΣB_i(t)*ΣB_j(t)/N² =<B_i*B_j> - <B_i>*<B_j>
is formed, with averages taken over a set of N points spanning the discontinuity and with i,j representing any two spatial directions. The matrix is diagonalized, and the eigenvector associated with the minimum eigenvalue gives the minimum variance direction (MVD). The number of points N to be used in the analysis, and the ratio of intermediate to minimum eigenvalues to take as a lower limit below which the MVD is considered not reliably determined, are part of the "art" of MVA.
3a. 相位前沿法向 (PFN) 的确定
最小方差分析(MVA)长期被用于确定太阳风磁场间断面的平面法向。该方法通过构建3×3方差矩阵:
M_ij = Σ(B_i(t)*B_j(t))/N - ΣB_i(t)*ΣB_j(t)/N² =<B_i*B_j> - <B_i>*<B_j>
其中平均值取自跨越不连续面的N个点,i,j 代表任意两个空间方向。对该矩阵进行对角化,与最小特征值对应的特征向量给出最小方差方向(MVD)。分析中使用的点数N,以及作为MVD可靠性判定下限的中间特征值与最小特征值之比,都是MVA "art" 的一部分。
3a.1. Technique 1, "Modified" MVA
Weimer et al (2003) applied the basic concepts of MVA to determine an MVD for each point of a continuous time series of interplanetary magnetic field data. In effect, they assumed each point lay on a planar phase front whose normal could be used, along with the solar wind flow velocity, in the determination of when that value (assumed constant everywhere on the plane) would be seen elsewhere in space.
After determining surprisingly good correspondence of time-varying time shifts thus determined with shifts determined by multi-spacecraft analysis (e.g., Weimer et al, 2002), an error was discovered in the Weimer et al. (2003) application of MVA. In particular, the 1/N^2 in the expression above was inadvertently replaced by 1/N. When the correct expression above was used, agreement with the multi-spacecraft time shift determinations deteriorated.
Shortly thereafter, Bargatze et al. (2005) demonstrated that the MVA equations used in Weimer et al (2003) corresponded approximately to an MVA constrained by the condition that the mean magnetic field vector over the analysis interval should lie in the plane of minimum variance, that is, that <B>·n (n is the MVD) ~ 0. The Weimer et al (2003) came to be known, at least on a limited basis, as Modified MVA.
Much of our early work in this two-year effort utilized the Weimer-provided code used in his 2003 analysis. None of the final products made available from our effort are based on this technique, although some interim products, no longer available, were.
3a.1 技术1,"修正"MVA
Weimer等人(2003)应用MVA的基本概念来确定行星际磁场连续时间序列中每个点的MVD。实际上,他们假设每个点都位于一个平面相位前沿上,该平面的法向可以与太阳风流速一起用于确定该值(假设在平面上各处恒定)将在空间其他位置被观测到的时间。
在发现通过这种方法确定的时间变化平移与多航天器分析确定的平移具有惊人的良好对应关系后,发现Weimer等人(2003)在应用MVA时存在错误。具体而言,上述表达式中的1/N²被错误地替换为1/N。当使用上述正确表达式时,与多航天器时间平移确定结果的一致性变差。
此后不久,Bargatze等人(2005)证明Weimer等人(2003)使用的MVA方程近似对应于一个受限于分析区间内平均磁场矢量应位于最小方差平面内条件的MVA,即<B>·n(n是MVD)≈0。Weimer等人(2003)的方法至少在有限范围内被称为"修正的MVA"。
本文在这两年工作中早期的大部分研究使用了Weimer提供的用于其2003年分析的代码。虽然一些不再可用的中间产品使用了该技术,但本数据集最终提供的所有产品均未基于此技术。
3a.2 Technique 2, MVAB-0
A Comment by Haaland et al (2006) pointed out that MVA exactly constrained by the <B>·n = 0 condition was first used by Sonnerup and Cahill (1968) and has been discussed by Sonnerup and Scheible (1998). Such an MVA, called MVAB-0 by Haaland et al, diagonalizes not the matrix M (see above), but the matrix P*M*P where the symmetric matrix P (P_ij = δ_ij - e_ie_j; δ_ij is kronecker delta and e is the unit vector in the direction of the mean magnetic field) projects each vector B onto the plane perpendicular to e.
Weimer has developed and provided to us new code that correctly implements the MVAB-0 approach.
We have used the MVAB-0 code generously provided by Weimer in mid 2006. It is the only MVA code used in our final products.
All original Weimer's IDL codes the user may find HERE.
Weimer spent significant effort determining parameters for the MVAB-0 technique, by seeking parameter sets whose results gave best agreement with multi-spacecraft determinations of phase front normals. In particular, he found, and we have used, for the MVAB-0 technique optimal results with 77 15-s points in each analysis (~19 min spans for each MVD determination), eigenvalue ratio greater than or equal to 5.2 (for a reliable MVD determination), and angle between MVD and solar wind flow vector less than 73 deg. (Larger angles lead to excessively long predicted delays.)
To eliminate spurious PFN determinations associated with data gaps, we added the requirement that the interval between the first and last point involved in each PFN determination should be no more than 1.25 times what it would be in the absence of data gaps.
3a.2 技术2,MVAB-0
Haaland等人(2006)的评论指出,严格受限于<B>·n=0条件的MVA最早由Sonnerup和Cahill(1968)使用,并在Sonnerup和Scheible(1998)中讨论过。Haaland等人称这种MVA为MVAB-0,它对角化的不是矩阵M(见上文),而是矩阵P*M*P,其中对称矩阵P(P_ij = δ_ij - e_ie_j; δ_ij 是克罗内克 δ,e 是平均磁场方向的单位矢量)将每个矢量B投影到垂直于e的平面上。
Weimer开发并向本数据集提供了正确实现MVAB-0方法的新代码。
本数据集使用了Weimer在2006年中期提供的MVAB-0代码。这是本数据集最终产品中唯一使用的MVA代码。
用户可以在[HERE]找到所有Weimer的原始IDL代码。
Weimer花费了大量精力确定MVAB-0技术的参数,通过寻找使结果与多航天器确定的相位前沿法向最吻合的参数组合。特别是他发现,并且本数据集也采用了,对于MVAB-0技术,每次分析使用77个15秒点(每次MVD确定约19分钟跨度),特征值比大于或等于5.2(用于可靠的MVD确定),以及MVD与太阳风流矢量之间的角度小于73度时,可获得最佳结果(更大的角度会导致预测延迟过长)。
为了消除与数据间隙相关的虚假PFN确定,本数据集增加了一个要求:每次PFN确定所涉及的第一个点和最后一个点之间的间隔不应超过无数据间隙时的1.25倍。
3a.3 Technique 3, Cross Product (CP)
A totally distinct approach to determining a phase front normal, that should be perfect for an ideal tangential discontinuity, is to take a cross product of magnetic field vectors just prior to, and following, a discontinuity. Weimer has developed code that determines phase front normals continuously using the cross product concept and has generously also provided this to us. In a private communication to us, Weimer cites the work of Knetter et al (2004)as the inspiration for developing this cross product (CP) code.
Weimer also spent significant effort determining parameters for the CP technique, by seeking parameter sets whose results gave best agreement with multi-spacecraft determinations of phase front normals. In particular, he found, and we have used, for the CP technique optimal results with the angle between the "before" and "after" vectors greater than 13 deg, that these vectors should be based on 17 points each, centered on the points 14 points before and after the point for which the PFN is sought (thus a span of 46 points, or ~12 mins, for the PFN determinatioin for each point), and that the component of the mean field vector normal to the phase front should be less than 0.035 nT. He also used a 73 deg limiting angle as for the MVAB-0 technique. As for the MVAB-0 technique, we added the requirement that the interval between the first and last point involved in each PFN determination should be no more than 1.25 times what it would be in the absence of data gaps.
3a.3 技术3,叉积法(CP)
确定相位前沿法向的一种完全不同的方法(对于理想的切向不连续性应完美适用)是取不连续性前后磁场矢量的叉积。Weimer开发了基于叉积概念连续确定相位前沿法向的代码,并慷慨地提供给本数据集。在私人通信中,Weimer引用Knetter等人(2004)的工作作为开发此叉积(CP)代码的灵感来源。
Weimer还花费大量精力确定CP技术的参数,通过寻找使结果与多航天器确定的相位前沿法向最吻合的参数组合。特别是他发现,并且本数据集也采用了,对于CP技术,当"前"与"后"矢量间夹角大于13度、这些矢量各基于17个点(以所求PFN点前后14点为中心,因此每个点PFN确定的总跨度为46个点或约12分钟)、以及平均磁场矢量垂直于相位前沿的分量应小于0.035 nT时,可获得最佳结果。与MVAB-0技术类似,他还采用了73度的极限角度。对于MVAB-0技术,本数据集增加了一个要求:每次PFN确定所涉及的第一个点和最后一个点之间的间隔不应超过无数据间隙时的1.25倍。
3a.4 Technique 4, JK/NP Combination of Techniques 2 and 3.
Now, having two fundamentally different techniques for PFN determination, we are able to add combinations of these two. We devised one, called Technique 4, which is the one we in fact used for producing the bow shock nose-shifted products discussed in these notes. The technique consists of first applying the CP method for a given point and its relevant neighbors, if an acceptable PFN is determined, this is used for this point. If CP does not produce an acceptable PFN (e.g., if the included angle between the "before" and "after" vectors is less than 13 deg), then the MVAB-0 technique is applied and its resultant PFN, if acceptable, is used. If neither CP nor MVAB-0 techniques produce an acceptable PFN, that point is marked for later interpolation, and a PFN is attempted for the next point in the time series.
3a.4 技术4,JK/NP组合技术2和3
现在,本数据集有两种根本不同的PFN确定技术,可以增加这两种技术的组合。本数据集设计了一种称为技术4的方法,实际上本数据集使用该技术生成本说明中讨论的弓激波前端锥平移产品。该技术首先对给定点及其相关邻域应用CP方法,如果确定出可接受的PFN,则用于该点。如果CP未能产生可接受的PFN(例如"前"与"后"矢量间夹角小于13度),则应用MVAB-0技术,若其产生的PFN可接受即被采用。如果两种技术均未产生可接受PFN,则标记该点以便后续插值,并对时间序列中的下一点尝试确定PFN。
3a.5 Technique 5, DW Combination of Techniques 2 and 3.
Weimer and King (2008) took an alternative approach and required that both the CP and MVAB-0 techniques should produce the same PFN (to within some accuracy, arbitrarily set at 5 deg) in order to be acceptable, otherwise the point was marked for later interpolation. Weimer has provided the code implementing this technique, which we call Technique 5.
In all cases (Techniques 2-5), a PFN direction satisfying relevant tests may or may not be determined. Typically, such points are marked. Then, in a second pass, for each such point, a PFN is determined by linear interpolation between the last good and next good PFN. In our implementations, the span across which such interpolations are made can be no longer than 3 hours. Data belonging to such extended gaps are not shifted nor included in our new data products.
We hope to modify this in the future, as an IMF that was not varying over many hours would be highly predictable at the bow shock nose yet would not lead to acceptable PFN's and hence would not be "shifted" and included in our products. We have searched the interval March-December, 1998, for such occurrences, and find 45 days with multi-hour data gaps in shifted data despite there being no gaps in the input ACE data. The average gap duration is 4-6 hours, so the fraction of data lost in our shifted data set is about 45*6 / 300*24 = 4%. Fortunately, this is when the IMF is most quiet and accurate bow shock nose predictions least critical.
Technique 5, the DW combination of 2 and 3, involves more interpolation of PFNs than the individual MVAB-0 or CP technique, or than the JK/NP combination thereof, which is one of the main reasons we did our production work with Technique 4. In the same search of March-December, 1998, data mentioned in the preceding paragraph, we found 60 days having intervals of 3 hours or more having Technique 4 data but not Technique 5 data (because no good PFN's were produced over such intervals by Technique 5.) Again assuming an average 6-hour gap duration, the fraction of time for which we do not have Technique 5 data relative to the time for which we have Technique 4 data is 60 * 6 / 0.96 * 300 * 24 = 5%.
Interestingly, which technique is used does not have a statistically significant affect on the profiles, as will be further discussed later.
3a.5 技术5,DW组合技术2和3
Weimer和King(2008)采用另一种方法,要求CP和MVAB-0技术产生的PFN必须一致(在任意设定的5度精度内)才可接受,否则标记该点以便后续插值。Weimer提供了实现该技术的代码,本数据集称之为技术5。
在所有情况下(技术2-5),可能确定也可能无法确定满足相关测试的PFN方向。通常此类点会被标记。然后在第二轮处理中,对每个此类点通过最后有效与下一个有效PFN之间的线性插值确定PFN。在本数据集的实现中,此类插值的跨度不超过3小时。属于此类长间隙的数据既不会被平移,也不会包含在本数据集的新产品中。
本文希望将来对此进行改进,因为数小时未变化的IMF虽然对弓激波前端锥具有高度可预测性,但由于无法产生可接受PFN而不会被"平移"和包含在本数据集的产品中。本数据集搜索了1998年3-12月期间此类情况,发现有45天尽管输入ACE数据无间隙,但平移数据中存在数小时的数据间隙。平均间隙持续4-6小时,因此在平移数据集中丢失的数据比例约为45 * 6/300 * 24=4%。幸运的是,这发生在IMF最平静且弓激波前端锥预测精度要求最低的时段。
技术5(DW组合技术2和3)比单独MVAB-0或CP技术或JK/NP组合需要更多PFN插值,这是本数据集使用技术4进行产品生产的主要原因之一。在上述1998年3-12月数据搜索中,本数据集发现60天存在技术4有数据而技术5无数据的3小时或更长时间段(因为技术5在这些时段未产生良好PFN)。再次假设平均6小时间隙持续时间,相对于技术4数据存在时间,技术5数据缺失的时间比例为60 * 6/0.96 * 300 * 24=5%。
有趣的是,使用哪种技术对剖面没有统计学上的显著影响,这一点将在后面进一步讨论。
3b. Mechanics of the time shifting
We introduced above the time shift equation as delta-t = n·(Rd - Ro) / n · V. n is the phase plane normal, determined by analysis of magnetic field data only. V is the solar wind velocity, including the ~30 km/s in the Ygse direction associated with the Earth's orbital motion about the sun. We initially shift 15-sec magnetic field data using the vector velocity determined by interpolating velocity values most immediately preceding and following the time tag of the observed magnetic field value, as long as the interval of interpolation is less than one hour. Magnetic field data points whose most immediately preceding and following velocity data are separated by more than an hour are not carried forward into our output data products.
Shifting means changing the time tags of data records. There is no changing of observed parameter values in the process.
After shifting magnetic field data, plasma data are shifted by using the time shift duration associated with the magnetic field observation whose pre-shift time tag lies closest to the plasma record's time tag, so long as two time tags lie within 2 minutes of each other.
3b. 时间平移的力学机制
本文前文介绍了时间平移公式Δt = n·(Rd - Ro)/n·V。其中n为仅通过磁场数据分析确定的相位平面法向,V为包含地球绕日轨道运动(~30 km/s Ygse分量)的太阳风速度。首先对15秒磁场数据进行平移,使用通过插值获得的流速矢量——只要观测磁场值时间标签前后最近的流速数据间隔小于1小时。若前后流速数据间隔超过1小时,则剔除该磁场数据点,不纳入输出产品。
平移仅改变数据记录的时间标签,观测参数值本身不作修改。
完成磁场数据平移后,等离子体数据的平移采用以下方式:选取与等离子体记录时间标签最接近的磁场观测点对应的平移时长(两者时间差须小于2分钟)。
3c. Out of sequence arrivals
Because the n and the V in the time shift equation vary at various time scales, it sometimes happens that, if phase front A is observed before phase front B, B may nevertheless be predicted to arrive at a remote location (e.g., the BSN location) before A arrives there. Such out-of-sequence arrivals may be due to "overtaking" associated with speed gradients or to "interpenetration" of variously oriented phase planes (especially given a significant separation of the locations of the BSN and of the observing spacecraft in the direction normal to the solar wind flow).
This "interpenetration" is clearly unphysical and is one of the primary shortcomings in our work. But there is no physically justified alternative yet. Two different alternatives have been considered. In Weimer's earliest work, he imagined that, for any pair of out-of-sequence phase fronts, the latter-arriving phase front would be precluded from arriving by the earlier arriving phase front and so could be dropped from further consideration. In more recent work, he imagined that the latter arriving phase front would displace the earlier arriving phase front, so that the earlier arriving phase front could be dropped from further consideration.
3c. 时序错位现象
由于时间平移方程中的n(相位前沿法向)和V(太阳风速度)具有多尺度变化特性,可能出现以下情况:若相位前沿A的观测时间早于相位前沿B,但B被预测会先于A抵达目标位置(如弓激波前端锥BSN)。这种时序错位可能源于两种机制:
- 速度梯度导致的"追赶"效应
- 不同取向相位平面的"相互穿透"效应(特别是当BSN与观测航天器在垂直于太阳风流向的方向上存在显著位移时)
这种"相互穿透"显然不符合物理规律,是本研究方法的主要局限之一。目前尚未建立更具物理合理性的替代方案。现有两种处理思路:
- Weimer早期方案认为:对于任何时序错位的相位前沿对,先抵达的相位前沿会阻挡后抵达的,因此可剔除后者
- 近期方案则认为:后抵达的相位前沿会取代先抵达的,因此应保留后者并剔除前者
Our sense is that, while we cannot specify the physical processes that will occur and prevent interpenetration and out-of-sequence arrivals, there is no good a prior reason for favoring earlier-arriving or later-arriving phase fronts in cases of out-of-sequence arrivals. As such, our approach is to accept all shifted data as belonging to the newly assigned time tags that each record acquires via our simple time shift equation, and to build 1-min data products with averages over all points shifting into a given minute. We recognize this involves an unphysical mixing of plasma elements from differing domains. But in some sense it emulates our ignorance of the dynamical processes that happen in the real solar wind.
There is a parameter in the output 1-min data records, the duration between observing times (DBOT), whose negative values indicate that out-of-sequence arrivals have occurred.
[Note added 01/22/2007. It should be recognized that occasionally our approach to averaging over all data shifting into a given minute leads to a series of minutes whose parameter values alternate between those characteristic of different plasma domains. That is, each minute average may not simply be an average of values from two domains, especially for Wind plasma data which starts at 92-s resolution. For a recent example of this, see 2007/10/25 Wind SWE plasma data prior to shifting at https://omniweb.gsfc.nasa.gov/ftpbrowser/wind_swe_kp.html, and see corresponding shifted data at https://omniweb.gsfc.nasa.gov/form/sc_merge_min1.html. There is a clean interplanetary shock in the unshifted data at 10:44 UT, while there is an interval of ~50 minutes duration, spanning 11:47 - 12:36, of shifting between pre-shock and post-shock parameter values in the minute averages built from shifted data. Users must exercise care in using spacecraft-specific, bow-shock-nose shifted data, or High Resolution OMNI data created from them, in the presence of significant variability in field and plasma parameters and in derived phase front normal directions.]
Note: our users can find the list of shocks Here .
本文的立场是:虽然无法精确描述实际发生的、能避免相互穿透和时序错位的物理过程,但在出现时序错位时,优先采用先到或后到的相位前沿都缺乏充分的先验依据。因此,本数据集采取折中方案:接受所有通过基本时间平移方程获得新时间标签的数据,并在构建1分钟分辨率数据产品时,对同一分钟内所有平移数据点取平均值。本文承认这会导致不同等离子体域元素的非物理性混合,但某种程度上反映了对真实太阳风动态过程的认知局限。
在输出的1分钟数据记录中,"观测时间间隔"(DBOT)参数若出现负值,即标志着时序错位现象的发生。
[2007年1月22日补充说明:
需要特别指出,这种基于分钟平均的处理方法,在某些情况下会导致连续分钟数据在不同等离子体域特征值之间震荡。特别是对于原始时间分辨率为92秒的Wind等离子体数据,每分钟平均值可能并非简单来自两个域的混合值。典型案例如2007年10月25日数据:
- 平移前原始数据(含10:44 UT清晰的行星际激波)见:https://omniweb.gsfc.nasa.gov/ftpbrowser/wind_swe_kp.html
- 平移后数据在11:47-12:36 UT出现约50分钟的激波前后参数震荡:https://omniweb.gsfc.nasa.gov/form/sc_merge_min1.html
当遇到磁场/等离子体参数及其导出的相位前沿法向存在显著变化时,用户在使用航天器专属的弓激波前端锥平移数据或由此生成的高分辨率OMNI数据时需保持审慎。]
注:用户可通过此链接查询激波列表:Here
4. Descriptions of the new data products.
This section describes the common format of (a) the 1-min ACE, Wind, IMP 8 and Geotail spacecraft-specific data sets that have been created at the bow shock nose, (b) the ACE data sets shifted by various techniques to the location of Wind and (c) the unshifted Wind data. It also describes the shared format of the 1-min and 5-min spacecraft-interspersed OMNI data sets.
The 1-min field and plasma averages are built from 15-s magnetic field and ~1-min plasma records whose shifted time tags indicate that any portion of the data underlying the parameter values (i.e., the higher resolution field values from which the 15 sec field averages were determined or the plasma spectra from which the bulk plasma parameters were determined) were observed during the relevant minute of interest. See Appendix 5 for a more discussion of the averaging, including the weighting used.
The 1-min time tags are at the start (not midpoint) of the data used in the average.
The 5-min OMNI averages are built from the five relevant 1-min averages. The standard deviations in these averages correspond to the process of building the 5-min averages and do not retain knowledge of the standard deviations in the 1-min averages.
本部分描述以下三类数据集的通用格式:(a) 在弓激波前端锥位置生成的1分钟分辨率ACE、Wind、IMP 8和Geotail航天器专属数据集;(b) 采用不同技术平移至Wind位置的ACE数据集;(c) 未平移的Wind原始数据。同时说明1分钟和5分钟分辨率混合航天器OMNI数据集的共享格式规范。
1分钟磁场与等离子体平均值由15秒磁场记录和约1分钟等离子体记录构建,其平移后的时间标签表明:构成参数值的任何基础数据(即用于计算15秒磁场平均值的高分辨率磁场值,或用于确定体等离子体参数的等离子体能谱)是在目标分钟时段内观测获得的。关于平均化处理(包括所用权重)的详细讨论参见附录5。
1分钟时间标签标注的是用于计算平均值的时段起点(而非中点)。
5分钟OMNI平均值由对应的五个1分钟平均值计算生成。这些平均值的标准差仅反映5分钟平均值的构建过程,不保留原始1分钟平均值的标准差信息。
对于航天器专属数据集,航天器标识和平移技术信息通过文件名而非数据记录体现。需特别说明:
Identification of spacecraft and of shift technique, for the spacecraft-specific data sets, are captured in file names rather than in data records. To review, we use the following identifiers:
Spacecraft: ACE 71 Geotail 60 IMP 8 50 Wind 51-Mag, Plasma-KP; Wind 52 Mag, Plasma definitive data ( for Modified OMNI high res. Data at https://omniweb.gsfc.nasa.gov/form/omni_min_def.html, see https://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/modified/hro_modified_format.txt) Shift technique: 2 MVAB-0 (min variance constrained by <B> · n = 0) 3 Cross Product 4 Mixed - use PFN(3) if good, otherwise use PFN(2) 5 Mixed - use PFN(3) = PFN(2) only if they agree Identification of source spacecraft for field and plasma data in OMNI is contained in data records, using above spacecraft ID's.
OMNI中磁场和等离子体数据的源航天器识别包含在数据记录中,使用上述航天器ID。
Only shift technique 4 is used in the spacecraft-specific data sets shifted to the bow shock nose and in the HRO data set created from them, while each shift technique is used in the ACE data sets shifted to Wind.
只有移位技术4被用于移至弓激波前端的航天器特定数据集和由它们创建的HRO数据集,而每种移位技术都被用于移至Wind的ACE数据集。
4a. Spacecraft-specific data sets
The common format for the spacecraft-specific data sets is as follows. Of the 37 words, words 8-15, 23-28, and 32-34 are 1-min averages formed over native-time-resolution data.
Word Format Fill val. Comment
1 Year I4 1995 ... present
2 Day I4 1 ... 365 or 366
3 Hour I3 0 ... 23
4 Minute I3 0 ... 59 at start of average
5 # of points in IMF avgs I4 999
6 Percent interp. I4 999 See footnote A below
7 CP/MV Flag F4.1 9.9 See footnote A below
8 Timeshift, sec I6 999999
9 Phase_frnt_nrml, X,GSE F6.2 99.99 GSE components of unit vector,
10 Phase_frnt_nrml, Y,GSE F6.2 99.99 X comp. always > 0.
11 Phase_frnt_nrml, Z,GSE F6.2 99.99
12 Scalar B, nT F8.2 9999.99
13 Bx, nT (GSE, GSM) F8.2 9999.99 See GSE, GSM
14 By, nT (GSE) F8.2 9999.99
15 Bz, nT (GSE) F8.2 9999.99
16 By, nT (GSM) F8.2 9999.99 Determined from post-shift GSE
components
17 Bz, nT (GSM) F8.2 9999.99 Determined from post-shift GSE
components see footnote GSM
18 RMS, timeshift, sec I7 999999
19 RMS, Phase front normal F6.2 99.99 See footnote B below
20 RMS, Scalar B, nT F8.2 9999.99 RMS Standard deviation in avg magnitude (wd. 12), nT
21 RMS, Field vector, nT F8.2 9999.99 See footnote B below
22 # of points in plasma avgs I4 999
23 Flow speed, km/s F8.1 99999.9
24 Vx Velocity, km/s, GSE F8.1 99999.9
25 Vy Velocity, km/s, GSE F8.1 99999.9
26 Vz Velocity, km/s, GSE F8.1 99999.9
27 Proton Density, n/cc F7.2 999.99
28 Temperature, K F9.0 9999999.
29 X(s/c), GSE, Re F8.2 9999.99 Position of spacecraft
30 Y(s/c), GSE, Re F8.2 9999.99
31 Z(s/c), GSE, Re F8.2 9999.99
32 X(target), GSE, Re F8.2 9999.99 Position of bow shock nose or Wind
33 Y(target), GSE, Re F8.2 9999.99
34 Z(target), GSE, Re F8.2 9999.99
35 RMS(target), Re F8.2 9999.99 See footnote B below
36 DBOT1, sec I7 999999 See footnote C below
37 DBOT2, sec I7 999999 See footnote C below
The data may be read with the format statement:
(I4,I4,2I3,2I4,F4.1,I7,3F6.2,6F8.2,I7,F6.2,2F8.2,I4,4F8.1,F7.2,F9.0,3F8.2,4F8.2,2I7)
Note that for missing data, fill values consisting of a blank followed by 9's which together constitute the Ix or Fx.y format are used.
4a. 航天器专属数据集格式规范
航天器专属数据集采用以下37字段通用格式。
注:缺失数据使用填充值表示,该值由空格后接9组成,符合Ix或Fx.y格式规范。
Percent interp: The percent (0-100) of the points contributing to the 1-min magnetic field averages whose phase front normal (PFN) was interpolated because neither the MVAB-0 nor Cross Product shift techniques yielded a PFN that satisfied its respective tests (see above for these).
CP/MV flag: The fraction (0-1) of the points, that contribute to the 1-min magnetic field averages and that are not based on interpolated PFN's, whose PFN was based on the MVAB-0 method.
If in a given 1-min magnetic field average, there are n points with CP-based PFN's, p points with MVAB-0 PFN's and q points with interpolated PFN's, then Percent interp = 100 * q/(n+p+q) and CP/MV flag = p/(p+n) (or = 9.9 if p+n = 0)
脚注A:
插值百分比(Percent interp):指在构成1分钟磁场平均值的所有数据点中,因MVAB-0和叉积偏移技术均未能生成满足各自检验条件的相位前沿法向(PFN)而需插值的点所占百分比(0-100)。
CP/MV标志(CP/MV flag):在构成1分钟磁场平均值且未采用插值PFN的数据点中,基于MVAB-0方法计算PFN的点所占比例(0-1)。
若某次1分钟磁场平均值包含n个基于叉积法(CP)的PFN点、p个基于MVAB-0的PFN点及q个插值PFN点,则:
插值百分比 = 100 × q/(n+p+q)
CP/MV标志 = p/(p+n)(若p+n=0,则记为9.9)
The computation of standard By and Bz, GSM is taken from the GEOPACK-2008 software package developed by Drs. Nikolai Tsyganenko.
脚注gsm:
标准By和Bz(GSM坐标系)的计算引自Nikolai Tsyganenko博士开发的GEOPACK-2008软件包。
Note that standard deviations for the three vectors are given as the square roots of the sum of squares of the standard deviations in the component averages. The component averages are given in the records but not their individual standard deviations.
脚注B:
注意三个矢量的标准差以各分量平均值标准差的平方和开方给出。分量平均值记录于数据中,但其单独标准差未提供。
The DBOT (Duration Between Observing Times) words: For a given record, we take the 1-min average time shift and estimate, using the solar wind velocity and the location of the observing spacecraft, the time at which the corresponding observation would have been made at the spacecraft. Then we take the difference between this time and the corresponding time of the preceding 1-min record and define this as DBOT1. This difference would be one minute in the absence of PFN (phase front normal) and/or flow velocity variations. When this difference becomes negative, we have apparent out-of- sequence arrivals of phase planes. That is, if plane A is observed before plane B at the spacecraft, plane B is predicted to arrive at the target before plane A. Searching for negative DBOT enables finding of such cases.
DBOT2 is like DBOT1 except that the observation time for the current 1-min record is compared to the latest (most time-advanced) previous observation time and not to the observation time of the previous record. Use of DBOT2 helps to find extended intervals of out-of-sequence arrivals.
We do not capture out-of-sequence-arrival information at 15-s resolution but only at 1-min resolution. The standard deviation in the 1-min averaged time shifts may be used to help find cases of out-of-sequence 15-s data.
脚注C:
DBOT(观测时间间隔)字段说明:
对于给定记录,本数据集利用1分钟平均时间偏移量,结合太阳风速和观测航天器位置,估算该记录对应观测在航天器处发生的实际时间。将此时间与前一条1分钟记录的对应时间作差,定义为DBOT1。若无相位前沿法向(PFN)或流速变化,该差值应为1分钟。当差值为负时,表明出现相位面"乱序到达"现象——即若航天器处观测到相位面A早于B,但预测相位面B将比A更早抵达目标位置。通过检索负DBOT值可识别此类情况。
DBOT2与DBOT1类似,但当前1分钟记录的观测时间是与先前所有记录中最晚(时间最超前)的观测时间比较,而非仅与前一条记录时间比较。DBOT2有助于发现持续性的乱序到达时段。
乱序到达信息仅以1分钟分辨率捕获,未涵盖15秒分辨率数据。但1分钟平均时间偏移的标准差可用于辅助识别15秒数据中的乱序情况。
End of footnotes for spacecraft-specific data format
4b. High-Resolution OMNI data set
The common format for the 1-min and 5-min OMNI data sets is
WORDS Format Fill val Comments
1 Year I4 1995 .....
2 Day I4 1 ... 365 or 366
3 Hour I3 0 ... 23
4 Minute I3 0 ... 59 at start of average
5 ID for IMF spacecraft I3 99 See footnote D below
6 ID for SW Plasma spacecraft I3 99 See footnote D below
7 # of points in IMF averages I4 999
8 # of points in Plasma averages I4 999
9 Percent interp I4 999 See footnote A above
10 Timeshift, sec I7 999999
11 RMS, Timeshift I7 999999
12 RMS, Phase front normal F6.2 99.99 See Footnotes E, F below
13 Time btwn observations, sec I7 999999 DBOT1, See footnote C above
14 Field magnitude average, nT F8.2 9999.99
15 Bx, nT (GSE, GSM) F8.2 9999.99
16 By, nT (GSE) F8.2 9999.99
17 Bz, nT (GSE) F8.2 9999.99
18 By, nT (GSM) F8.2 9999.99 Determined from post-shift GSE components
19 Bz, nT (GSM) F8.2 9999.99 Determined from post-shift GSE components
20 RMS SD B scalar, nT F8.2 9999.99 RMS Standard deviation in avg magnitude (wd. 14), nT
21 RMS SD field vector, nT F8.2 9999.99 See footnote E below
22 Flow speed, km/s F8.1 99999.9
23 Vx Velocity, km/s, GSE F8.1 99999.9
24 Vy Velocity, km/s, GSE F8.1 99999.9
25 Vz Velocity, km/s, GSE F8.1 99999.9
26 Proton Density, n/cc F7.2 999.99
27 Temperature, K F9.0 9999999.
28 Flow pressure, nPa F6.2 99.99 See footnote G below
29 Electric field, mV/m F7.2 999.99 See footnote G below
30 Plasma beta F7.2 999.99 See footnote G below
31 Alfven mach number F6.1 999.9 See footnote G below
32 X(s/c), GSE, Re F8.2 9999.99
33 Y(s/c), GSE, Re F8.2 9999.99
34 Z(s/c), GSE, Re F8.2 9999.99
35 BSN location, Xgse, Re F8.2 9999.99 BSN = bow shock nose
36 BSN location, Ygse, Re F8.2 9999.99
37 BSN location, Zgse, Re F8.2 9999.99
38 AE-index, nT I6 99999 See World Data Center for Geomagnetism, Kyoto
39 AL-index, nT I6 99999 See World Data Center for Geomagnetism, Kyoto
40 AU-index, nT I6 99999 See World Data Center for Geomagnetism, Kyoto
41 SYM/D index, nT I6 99999 See World Data Center for Geomagnetism, Kyoto
42 SYM/H index, nT I6 99999 See World Data Center for Geomagnetism, Kyoto
43 ASY/D index, nT I6 99999 See World Data Center for Geomagnetism, Kyoto
44 ASY/H index, nT I6 99999 See World Data Center for Geomagnetism, Kyoto
45 PC(N) index, F7.2 999.99 See World Data Center for Geo
magnetism, Copenhagen
(45 Na/Np Ratio F7.3 9.999 For new modified data set,
See footnote I below)
46 Magnetosonic mach number F5.1 99.9 See footnote G below
-------
Proton flux (>10 MeV) F9.2 99999.99 In 5-min OMNI, but not in 1-min OMNI ,(see fluxes)
Proton flux (>30 MeV) F9.2 99999.99 In 5-min OMNI, but not in 1-min
OMNI
Proton flux (>60 MeV) F9.2 99999.99 In 5-min OMNI, but not in 1-min
OMNI
The data may be read with the format statement
1-min:
(2I4,4I3,3I4,2I7,F6.2,I7, 8F8.2,4F8.1,F7.2,F9.0,F6.2,2F7.2,F6.1,6F8.2,7I6,F7.2,F5.1)5-min:
(2I4,4I3,3I4,2I7,F6.2,I7, 8F8.2,4F8.1,F7.2,F9.0,F6.2,2F7.2,F6.1,6F8.2,7I6,F7.2,F5.1,3F9.2)Note that for missing data, fill values consisting of a blank followed by 9's which together constitute the Ix or Fx.y format are used. See Definition of GSE, GSM HERE
数据可通过以下格式语句读取:
1分钟数据格式:
(2I4,4I3,3I4,2I7,F6.2,I7,8F8.2,4F8.1,F7.2,F9.0,F6.2,2F7.2,F6.1,6F8.2,7I6,F7.2,F5.1)
5分钟数据格式:
(2I4,4I3,3I4,2I7,F6.2,I7,8F8.2,4F8.1,F7.2,F9.0,F6.2,2F7.2,F6.1,6F8.2,7I6,F7.2,F5.1,3F9.2)
注意:缺失数据使用由空格后接多个9组成的填充值表示,其格式符合Ix或Fx.y规范。参见GSE、GSM坐标系定义此处。
The following spacecraft ID's are used: ACE 71 Geotail 60 IMP 8 50 Wind 51-IMF Mag. data and Plasma SWE_KP data; Wind 52 Mag, Plasma definitive data ( for Modified OMNI high res. Data at https://omniweb.gsfc.nasa.gov/form/omni_min_def.html, see https://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/modified/hro_modified_format.txt) Note: Multiple source high res. OMNI data base is not “hard” product, which stay unchanged after it has been made/updated, we try to make quality improvement when the new data (mostly from Wind and ACE spacecraft) became available. Data could be swapping from one source to other as better delayed data becomes available. or one of the sources has been reprocessed by PI's.
脚注D:
使用以下航天器编号:ACE 71;Geotail 60;IMP 8 50;Wind 51(IMF磁场数据和等离子体SWE_KP数据);Wind 52(磁场和等离子体最终数据)。关于修正版高分辨率OMNI数据(参见https://omniweb.gsfc.nasa.gov/form/omni_min_def.html),请查阅https://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/modified/hro_modified_format.txt。注意:多源高分辨率OMNI数据库并非"固定"产品,其内容会随新数据(主要来自Wind和ACE航天器)的获取而进行质量改进。当更优质的延迟数据可用时,数据源可能切换;或当某数据源被首席科学家重新处理时也会更新。
Note that standard deviations for the minute-averaged phase front normal and magnetic field vectors are given as the square roots of the sum of squares of the standard deviations in the component averages. For the magnetic field vectors only, the component averages are given in the records but not their individual standard deviations. 1-min averaged phase front normal directions are given in the spacecraft-specific data sets but not in the high resolution OMNI data set.
脚注E:
注意分钟平均相位前沿法向矢量和磁场矢量的标准差,是以各分量平均值标准差的平方和开方给出的。仅对于磁场矢量,记录中包含分量平均值但不包含其单独的标准差。1分钟平均相位前沿法向方向记录在航天器专用数据集中,但未包含在高分辨率OMNI数据集中。
There are no phase front normal standard deviations in the 5-min records. This word has fill (99.99) for such records.
脚注F:
5分钟记录中不包含相位前沿法向的标准差。该字段在此类记录中以填充值(99.99)表示。
Derived parameters are obtained from the following equations. Flow pressure = (2*10**-6)*Np*Vp**2 nPa (Np in cm**-3, Vp in km/s, subscript "p" for "proton") Electric field = -V(km/s) * Bz (nT; GSM) * 10**-3 Plasma beta = [(T*4.16/10**5) + 5.34] * Np / B**2 (B in nT) (Note that very low |B| values (<~ 0.3 nT) encountered rarely in high resolution data can drive plasma beta values to above 1000. In high resolution OMNI, there were about 20 such minutes encountered in ~12 years. We have assigned the value 998.0 to plasma beta in such cases. Correct values of T, Np and B are available in the records for recomputation of plasma beta values.) Alfven Mach number = (V * Np**0.5) / (20 * B) Magnetosonic Mach Number = V/Magnetosonic_speed Magnetosonic speed = [(sound speed)**2 + (Alfv speed)**2]**0.5 The Alfven speed = 20. * B / N**0.5 The sound speed = 0.12 * [T + 1.28*10**5]**0.5 For details on these, see Detailed Derivation of Parameters.
脚注G:
衍生参数通过以下公式计算:
流动压力 = (2 * 10^-6)NpVp^2 nPa(Np单位cm^-3,Vp单位km/s,下标"p"表示质子)
电场 = -V(km/s) * Bz (nT; GSM坐标系) * 10^-3
等离子体β = [(T*4.16/10^5) + 5.34] * Np / B^2(B单位nT)
(注意:高分辨率数据中极少出现的极低|B|值(约<0.3 nT)可能导致等离子体β值超过1000。在高分辨率OMNI数据约12年记录中,出现约20次此类情况。此时赋β值为998.0。记录中仍保留正确的T、Np和B值可供重新计算。)
阿尔芬马赫数 = (V * Np^0.5) / (20 * B)
磁声马赫数 = V/磁声速
磁声速 = [(声速)^2 + (阿尔芬速度)^2]^0.5
阿尔芬速度 = 20. * B / N^0.5
声速 = 0.12 * [T + 1.28 * 10^5]^0.5
详细推导参见参数详细推导说明
For new modified high resolution OMNI data word #45 ( PCN index) are substituted by Na/Np ratio, The new parameter Na/Np Ratio is calculated using Wind SWE definitive data. Mote details, see at https://omniweb.gsfc.nasa.gov/form/omni_min_def.html And/or at FTP site file: "00readme_modified" at https://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/modified/00readme_modified.
脚注I:
新版修正高分辨率OMNI数据中,第45字段(PCN指数)被Na/Np比值取代。新参数Na/Np比值使用Wind SWE最终数据计算。更多细节参见https://omniweb.gsfc.nasa.gov/form/omni_min_def.html和FTP站点文件"00readme_modified"(位于https://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/modified/00readme_modified)
5. Dependence of Predictability on Shift Technique, Separation Geometry, Variance Level and Flow Speed
It is an important current research topic to determine under what conditions single-spacecraft observations of solar wind field and plasma variations upstream (and possibly off to the side of) the Earth's magnetosphere can lead to reliable predictions of the solar wind variations to occur at the Earth's bow shock. Goodness of predictability may depend on many variables, including the spacecraft- to-bow shock separation geometry, the level of variation in the solar wind, the nature of the solar wind (e.g., fast vs. slow flows) and the technique used to shift data from the observation point to the bow shock.
It is possible to assess predictability goodness by multiple techniques. One would be to compare single-spacecraft predictions with the results of multi-spacecraft analyses, as was done by Weimer et al (2003), but done over a statistically significant number of independent time intervals. Another would be to search out a statistically significant number of major solar wind field and/or plasma discontinuous or other variations, and to note agreement level between spacecraft A's observations and spacecraft B's observations as shifted to A (A - shifted_B cross correlation functions - ccf's). A third would be to simply compute A - shifted_B ccf's in a large number of fixed-duration time intervals, each characterized by A-B separation geometry, mean physical parameter values in the intervals, parameter variance levels and the shift technique.
可预测性对偏移技术、空间分离几何构型、波动水平及流速的依赖性
当前一个重要研究课题是确定在何种条件下,单航天器对地球磁层上游(可能还包括侧向)太阳风场和等离子体变化的观测,能够可靠预测地球弓激波处即将发生的太阳风变化。预测优度可能依赖于多种变量,包括航天器与弓激波的分离几何构型、太阳风波动水平、太阳风性质(如高速流与低速流)以及将数据从观测点偏移至弓激波所使用的技术。
可通过多种技术评估预测优度。一种方法是将单航天器预测结果与多航天器分析结果进行对比,如Weimer等(2003年)所做的工作,但需在统计显著数量的独立时间区间内完成。另一种方法是找出统计显著数量的太阳风场和/或等离子体不连续或其他重大变化,并记录航天器A的观测数据与偏移至A位置的航天器B观测数据之间的一致性水平(即A与偏移后B的互相关系数——ccf)。第三种方法则是在大量固定时长的时间区间内直接计算A与偏移后B的互相关系数,每个区间需以A-B分离几何构型、区间内物理参数均值、参数波动水平及偏移技术为特征。
We are taking the last approach of the above paragraph. We have built a database of ccf's for field and plasma parameters for ~6000 4-hour intervals in 1998-2000, for ACE data shifted to the Wind spacecraft by each of the four shift techniques discussed in Section 3a of these notes. While a final and comprehensive assessment of goodness of predictability as a function of ACE-Wind separation, solar wind flow state, solar wind variation level and shift technique lies in the near future, we report herein some preliminary results. It is intended that the final assessment will be published and will be reproduced here when completed.
We focus here on predictability of Bz variations as the most geoeffective of the solar wind parameters. Imagine that computed 4-hour ccf's are the dependent variable in an independent variable space consisting of Wind-ACE separation geometry (along and across the flow direction), the means and standard deviations for each physical parameter in the 4-hour intervals, and the shift technique. For any bin in independent variable space, we find a certain number of intervals whose ccf's make up a distribution itself having a mean, median, standard deviation, etc. We examine the medians of these distributions as indicating dependence of predictability on the independent variables.
本数据集采用上述段落中的最后一种方法。目前已建立一个互相关系数数据库,包含1998-2000年间约6000个4小时区间内,通过本笔记第3a节讨论的四种偏移技术将ACE数据偏移至Wind航天器位置后得到的场和等离子体参数互相关系数。虽然关于可预测性优度与ACE-Wind空间分离、太阳风流动状态、太阳风波动水平及偏移技术之间关系的最终全面评估尚待完成,但本文汇报部分初步结果。最终评估将在未来发表,完成后也将在此重现。
本数据集重点关注太阳风参数中最具地磁效应的Bz变化可预测性。假设计算得到的4小时互相关系数是自变量空间中的因变量,该空间由Wind-ACE分离几何构型(沿流向和垂直流向)、4小时区间内各物理参数的均值与标准差以及偏移技术构成。对于自变量空间中的任意分箱,本数据集找到若干区间,其互相关系数构成一个分布,该分布本身具有均值、中位数、标准差等统计量。本数据集通过分析这些分布的中位数来揭示可预测性对自变量的依赖性。
With no selection of parameters but exercising each of the 4 shift techniques, we find four distributions with numbers of 4-hour intervals ranging between 5109 and 5288 and with medians ranging between 0.691 and 0.706. Standard deviations in the (non-Gaussian) distributions of medians are ~0.31 Thus, at least in the case of looking over all the data, the various shift techniques are giving statistically equivalent results. In fact this is also the case for virtually all the binned analyses we've done.
Except where noted, additional results in this section are for shifts by "technique4" that we have used in our production work.
To first assess dependence of predictability on the transverse separation of Wind and ACE, we do a series of runs binned only by ACE-Wind Impact Parameter (IP). We find that the median of the Bz ccf distributions increases through the values 0.35, 0.34, 0.54,0.63, 0.75, 0.85, 0.87 at the IP decreases through the bins >150, 120-150,90-120, 60-90, 30-60, 15-30 and 0-15 Re. The numbers of 4-hour intervals in these distributions range from 159 (120-150 Re) to 2001 (30-60 Re). It is interesting that the ccf is the same for the 120-150 Re bin and the >150 Re bin, and that the ccf is the same for the 0-15 and 15-30 Re bins. The latter may be due to the occurrence of rotational discontinuities which, because of their propagation relative to the ambient solar wind, are not well accommodated by the shift assumptions. If we define a Bz scale length as the distance over which the Bz ccf falls by 10% (cf. Richardson and Paularena, 2001), then the scale length is approximately (135-15)/(0.85-0.35)*10 = 24 Re.
在不筛选参数但分别应用四种偏移技术的情况下,得到四组分布数据,其4小时区间数量介于5109至5288之间,中位数分布在0.691至0.706范围内。这些(非高斯)分布中位数的标准差约为0.31。由此可见,至少在全局数据分析中,不同偏移技术产生的统计结果具有等效性。事实上,本数据集已完成的大多数分箱分析也普遍呈现这一特征。
除特别说明外,本节后续结果均采用实际工作中使用的"技术4"偏移方法。
为评估预测能力对Wind与ACE横向分离距离的依赖性,本数据集按ACE-Wind撞击参数(IP)进行分箱计算。发现当IP值从>150 Re逐步降至0-15 Re(分箱区间依次为>150、120-150、90-120、60-90、30-60、15-30、0-15 Re)时,Bz互相关系数分布的中位数呈现0.35、0.34、0.54、0.63、0.75、0.85、0.87的递增趋势。各分布包含的4小时区间数量从159个(120-150 Re)到2001个(30-60 Re)不等。值得注意的是120-150 Re与>150 Re区间的ccf值相同,0-15 Re与15-30 Re区间的ccf值也相同。后者可能源于旋转间断的存在——由于其相对于背景太阳风的传播特性,偏移假设难以有效处理此类情况。若将Bz特征长度定义为ccf下降10%对应的距离(参照Richardson和Paularena,2001年),则计算得特征长度约为(135-15)/(0.85-0.35)*10 = 24 Re。
Interestingly, when we look at medians of Bz ccf distributions involving MVAB-0-determined and CP-determined PFN's in the IP = 0-15 Re and 15-30 Re bins, we find 0.87 (0-15 Re) and 0.84 (15-30 Re) for both methods. That both methods give the same result may run counter to an expectation that the MVAB-0 method may be good for PFN determination for both tangential and rotational discontinuities, while the CP method should be better for PFN determination for non-propagating tangential discontinuities having no field component normal to the discontinuity plane.
To examine the dependence of predictability on the solar wind variability level, we did a series of runs for various values of the standard deviation in the 4-hour Bz average (sigma-Bz). Upon limiting the ACE-Wind Impact Parameter to be less than 60 Re, we found median values of the Bz ccf distributions of 0.66, 0.76, 0.82, 0.85, and 0.91 in the sigma-Bz bins 0-1, 1-2, 2-3, 3-4, >4 nT. The numbers of intervals per distribution ranges between 277 (sigma-Bz > 4 nT) and 1129 (1 < sigma-Bz < 2 nT). Removing the constraint on the Wind-ACE IP almost doubled the numbers of 4-hour intervals per sigma-Bz run, but decreased the median ccf's only by 7% (at largest sigma-Bz) to 13% (at smallest sigma-Bz). The conclusion here is that the higher the variation level in Bz, the more predictable are bow shock nose Bz variations, given upstream Bz observations.
有趣的是,当分析IP=0-15 Re和15-30 Re区间内基于MVAB-0法与叉积法(CP)确定PFN的Bz ccf分布中位数时,两种方法均得到0.87(0-15 Re)和0.84(15-30 Re)的结果。这与预期可能相悖:理论上MVAB-0法应适用于切向间断和旋转间断的PFN确定,而CP法则应更擅长处理无垂直磁场分量的非传播型切向间断。
为考察预测能力对太阳风波动水平的依赖性本数据集针对4小时Bz平均值标准差(σ-Bz)进行分箱计算。当限制ACE-Wind IP<60 Re时,σ-Bz分箱区间(0-1、1-2、2-3、3-4、>4 nT)对应的Bz ccf分布中位数分别为0.66、0.76、0.82、0.85和0.91。各分布区间数量从277个(σ-Bz>4 nT)到1129个(1<σ-Bz<2 nT)不等。取消IP限制后,各σ-Bz分箱的4小时区间数量近乎翻倍,但ccf中位数仅下降7%(最大σ-Bz区间)至13%(最小σ-Bz区间)。这表明Bz波动水平越高,基于上游观测对弓激波前端部Bz变化的预测能力越强。
To examine possible dependence of predictability on the X distance upstream, we define bins by X(ACE) - X(Wind). For a series of runs all having Wind-ACE IP < 60 Re, we find medians in Bz ccf distributions of 0.78, 0.77, 0.81, 0.74 for bins of <50 Re, 50-125 Re, 125-200 Re, >200 Re respectively. The numbers of intervals in the distributions range between 345 (delta X > 200 re) and 1248 (125 Re < delta X < 200 Re). The conclusion here is that, while there's a hint of a downturn in the Bz ccf at delta X > 200 Re, there's no major dependence of predictability on delta X.
Finally, to assess predictability on flow speed, we do runs in flow speed bins <350, 350-450, 450-550 and >550 km/s for IP < 60 Re and for sigma-Bz and for sigma-Bz > 1 nT, we find medians in the Bz ccf distributions of 0.84, 0.83, 0.79, 0.72 as the speed increases through the four indicated bins. Numbers of 4-hour intervals in the bins ranges from 346 (V > 550 km/s) to 1210 (350-450 km/s). Predictability in Bz variations decreases modestly as the solar wind flow speed increases.
针对上游X方向距离的潜在影响,本数据集按X(ACE)-X(Wind)分箱分析。所有计算均限制Wind-ACE IP<60 Re,结果显示ΔX分箱区间(<50 Re、50-125 Re、125-200 Re、>200 Re)对应的Bz ccf中位数分别为0.78、0.77、0.81、0.74。各分布区间数量介于345个(ΔX>200 Re)至1248个(125 Re<ΔX<200 Re)之间。这表明虽然ΔX>200 Re时ccf略有下降,但预测能力总体上不显著依赖于ΔX距离。
最后评估流速影响:在IP<60 Re且σ-Bz>1 nT条件下,流速分箱区间(<350、350-450、450-550、>550 km/s)对应的Bz ccf中位数随流速递增呈现0.84、0.83、0.79、0.72的递减趋势。各分箱4小时区间数量从346个(V>550 km/s)到1210个(350-450 km/s)不等。这表明太阳风流速增大时,Bz变化的预测能力会适度降低。
Appendix 1. Cross-spacecraft Comparisons
While the key issue for our new products is the extent to which solar wind variations observed remote from the Earth's bow shock may be used to infer variations at the bow shock nose, it is also of interest to review whether there are systematic differences in parameter values between pairs of input data sets. This is largely because the spacecraft-interspersed data set (i.e., High Resolution OMNI - HRO) should not have excessive parameter changes due to transition between one source spacecraft and another, and so that the parameter values included in the new HRO are most likely "true" at least at the observation points.
This section discusses our search for systematic differences among input data sets. We expect that any systematic differences, while they may change slowly, will not change on the scale of days or weeks. Thus we assess systematic differences using hourly averaged physical parameter values as built from higher resolution data shifted by the simple technique used in preparing the hourly resolution OMNI 2 data set and discussed here
SPDF - About OMNIWeb Data.
Such data, and the tools for comparison, are available at
MERGED IMP, WIND and ACE MAGNETIC FIELD DATA real deviations (magnetic field data)
Scatter Plot IMP, Geotail, WIND, ACE hourly plasma data (plasma data, linear)
Scatter Plot IMP, WIND, ACE hourly plasma data (logs of N and T)
These interfaces determine the slopes and intercepts in the linear regressions P1 = a + b*P2, where P represents any of the relevant physical parameters (or, as special cases, log N and log T). The interfaces also determine the uncertainties in the slope and intercept, cross correlation coefficients, and the rms deviations between the data points on the scatter plots and the best fit lines. The "1" and the "2" refer to the members of any spacecraft pair.
Our work uses linear regressions of logs of densities and temperatures rather than the values of N and T themselves because these parameters are more log-normally distributed than normally distributed.
Note that the documentation of our hourly resolution OMNI 2 data set at SPDF - About OMNIWeb Data extensively discusses intercomparisons of hourly ACE, Wind and IMP 8 magnetic field and plasma data. The rationale for the present discussion is to address the significantly extended time span over which data are now available for intercomparison.
For Wind/SWE, we would use the Key Parameter (KP) data, but would normalize them, if any normalizations were appropriate, to the nonlinear fit (NLF) data for which admirably small uncertainty estimates had been derived by Kasper et al. (2006). We have built a series of parameter-specific tables summarizing the results of the annual and multi-year cross correlations. For plasma comparisons, we used P(Wind/NLF) = a + b * P(2) where now P(2) might be ACE or IMP 8 or Wind/KP.
虽然本数据集新产品的核心问题在于如何利用地球弓激波远端观测到的太阳风变化来推断弓激波前端部处的变化,但同样值得探讨的是不同输入数据集之间是否存在参数值的系统性差异。这主要基于两点考量:首先,航天器交替采集的数据集(即高分辨率OMNI - HRO)不应因数据源切换而产生过度的参数跳变;其次,确保新HRO数据集包含的参数值至少在观测点上是"真实可靠"的。
本节将阐述本数据集对输入数据集系统性差异的探索。本文预期任何系统性差异的变化都是缓慢的,不会以天或周为单位剧烈波动。因此,本数据集采用基于简单偏移技术(该技术用于制备小时分辨率OMNI 2数据集,详见SPDF - OMNIWeb数据说明)处理后的高分辨率数据生成小时平均物理参数值,并以此评估系统性差异。相关数据及比较工具可通过以下链接获取:
MERGED IMP、WIND和ACE磁场数据实际偏差(磁场数据)
IMP、Geotail、WIND、ACE小时等离子体数据散点图(等离子体数据,线性坐标)
IMP、WIND、ACE小时等离子体数据散点图(密度N与温度T的对数坐标)
这些交互界面可确定线性回归方程P1 = a + b*P2中的斜率和截距(其中P代表任意相关物理参数,特殊情况下也包含log N和log T)。界面同时提供斜率与截距的不确定度、互相关系数,以及散点图中数据点与最佳拟合线之间的均方根偏差。下标"1"和"2"分别代表航天器对中的两个成员。
本数据集采用密度和温度对数的线性回归而非原始值,因为这些参数更符合对数正态分布而非正态分布。需注意的是,SPDF - OMNIWeb数据说明文档已详细讨论了ACE、Wind和IMP 8小时分辨率磁场与等离子体数据的交叉比对。本文讨论的意义在于:当前可用于交叉比对的数据时间跨度已显著扩展。
对于Wind/SWE数据,本数据集优先使用关键参数(KP)数据集,但会参照Kasper等(2006)推导出极小不确定度的非线性拟合(NLF)数据进行适当归一化处理。本数据集已建立一系列参数专用表格,汇总年度及多年跨度的交叉相关结果。在等离子体参数比较中,采用P(Wind/NLF) = a + b * P(2)的回归模型,其中P(2)可代表ACE、IMP 8或Wind/KP的数据集。
Magnetic field comparisons
If the Wind magnetic field data are right, then IMP field magnitude and components (absolute values) would need to be increased by 1.5 to 2 percent to match Wind. Thus there are systematic Wind-IMP magnetic field component differences of ~0.3 to ~0.4 nT at ± 20 nT. Averaged over 1996-2000, when Bz(Wind) = 0, Bz(IMP) = -0.06, indicating good IMP zero level determination. There is no clear evidence of any time dependence in the Wind-IMP relations in magnetic field data.
By contrast, Wind version 4 and ACE magnetic field data agree to within 1 percent for virtually all components and years, and to within 0.03 nT in Bz at Bz = 0.
The Geotail magnetic field data available as we were creating these new data sets were known to have preliminary and incorrect Bz offsets. See the discussions in Section 2 and in Appendix 2.
磁场数据对比
若Wind磁场数据准确,则IMP磁场总量及各分量(绝对值)需增加1.5%至2%才能与Wind数据匹配。因此在±20 nT量级下,Wind与IMP磁场分量存在约0.3至0.4 nT的系统性差异。对1996-2000年数据取平均显示,当Bz(Wind)=0时,Bz(IMP)=-0.06,表明IMP零位标定良好。Wind与IMP磁场关系未见明显时间依赖性。
相比之下,Wind第4版与ACE磁场数据在各分量及不同年份间的一致性优于1%,且当Bz=0时,Bz差异小于0.03 nT。
本数据集创建时采用的Geotail磁场数据存在Bz零位偏移问题(详见第2章及附录2说明)。
Flow speed comparisons
Flow speeds agree to within 1% or less. That is |V(Wind/NLF) - V(Z)| / V(Wind/NLF) < 1%,
where Z = Wind/KP, ACE, or IMP. For the case of Z = ACE and IMP, V(Wind/NLF) exceeds V(Z). V(Wind/KP) is virtually identical to V(Wind/NLF).
流速对比
流速差异不超过1%,即|V(Wind/NLF) - V(Z)| / V(Wind/NLF) < 1%(Z代表Wind/KP、ACE或IMP)。当Z为ACE或IMP时,V(Wind/NLF)略高于V(Z)。Wind/KP与Wind/NLF流速几乎完全相同。
Flow direction angle comparisons
Flow azimuth angles between any source pair agree to within 1 degree over the ± 10 deg range. Flow elevation angle agreement level depends on the source pair. Wind/NLF and Wind/KP agree to within 1 degree over the ± 10 degree range. The same is true for Wind/NLF vs. ACE except that near +10 deg, Wind/NLF exceeds ACE by ~1.5 deg. The IMP elevation angle exceeds the Wind/NLF elevation angle by an amount ranging from ~1.2 deg at -10 deg to ~4 degrees at +10 degrees. An apparent IMP flow elevation angle offset of ~2 deg has been recognized for many years. The present analysis shows for the first time an elevation angle dependence in this offset. There are no evident time dependences in the relations between any source pair for flow speed or direction angles.
流向角度对比
任意数据源间的流动方位角在±10°范围内差异小于1°。流动仰角一致性因数据源而异:Wind/NLF与Wind/KP在±10°范围内差异小于1°。Wind/NLF与ACE在+10°附近存在约1.5°偏差。IMP仰角较Wind/NLF偏高,偏差量从-10°时的1.2°递增至+10°时的4°。IMP流动仰角约2°的系统偏移长期存在,本次分析首次揭示该偏移具有角度依赖性。流速与流向角度的数据源间关系均未表现明显时间依赖性。
Density Comparisons and Temperature
Wind and ACE proton parameters. Previously we used Wind/SWE parameters based on anisotropic nonlinear fits to Wind/SWE plasma distributions through November 2004, and we used cross-normalized Wind/SWE Key Parameter data thereafter. Now, owing to their greater "robustness," the only Wind/SWE proton data we use for 1995-current are the cross-normalized SWE KP data. (SWE KP cross-normalization is to the SWE nonlinear fit data.) All recent results are given in Appendix 2.
The full old OMNI documentation package made before February 15, 2013 user may find at https://omniweb.gsfc.nasa.gov/html/HROdocum_old.html. (New upgrades for data cross-normalizations were made after February 15, 2013)
密度与温度对比
Wind和ACE质子参数的处理方式:在2004年11月之前,本数据集使用基于各向异性非线性拟合的Wind/SWE参数;此后则采用交叉归一化的Wind/SWE关键参数数据。目前,出于更高的"稳健性"考虑,本数据集对1995年至今的数据仅使用交叉归一化的SWE KP数据(该归一化以SWE非线性拟合数据为基准)。所有最新结果详见附录2。
2013年2月15日前制作的完整旧版OMNI文档包可在https://omniweb.gsfc.nasa.gov/html/HROdocum_old.html获取(数据交叉归一化的新升级于2013年2月15日后实施)。
Appendix 2. Cross-Normalizations
Using hourly averaged data, the previous section has revealed the mainly small systematic differences for each magnetic field parameter between Wind on the one hand and ACE and IMP 8 on the other hand. It has also revealed systematic differences for each plasma parameter between the nonlinear fit-based Wind/SWE data on the one hand and the Wind/SWE key parameter data, the ACE/ SWEPAM data and the MIT/IMP 8 data on the other hand.
The question is now whether and for which parameters we should cross normalize the data to be included in the spacecraft-interspersed high resolution OMNI data set. (Note that we do no such normalizations for our new spacecraft-specific data sets.) We choose to minimize cross-normalizations for multiple reasons. First, since we use 3-hour swaths of same-spacecraft data in 1-min OMNI, there are at most only 0.55% of minute-to-minute transitions that would involve a change of source spacecraft. In fact, the actual fraction of transitions between sources is very much less than this. Second, we do not expect this data set to be used for long term solar wind variation studies; the hourly resolution OMNI data set is more appropriate for this.
So, as for the present hourly OMNI data set, we shall cross-normalize only plasma densities and temperatures.
通过小时平均数据的分析,前文揭示了Wind与ACE及IMP 8在各类磁场参数间存在的主要微小系统性差异,同时也展现了基于非线性拟合的Wind/SWE数据与Wind/SWE关键参数数据、ACE/SWEPAM数据及MIT/IMP 8数据在等离子体参数方面的系统性差异。
当前需要解决的问题是:对于即将纳入航天器交替采集的高分辨率OMNI数据集,本数据集是否应当进行交叉归一化处理,以及针对哪些参数实施此类处理(注:本数据集不对航天器专用数据集实施任何归一化操作)。基于多重考量,本数据集决定尽可能减少交叉归一化的范围。首先,由于在1分钟分辨率OMNI数据中使用3小时同源数据段,每分钟数据源切换的概率上限仅为0.55%,而实际切换频率远低于此值。其次,该数据集本就不适用于长期太阳风变化研究——此类研究更适合采用小时分辨率OMNI数据集。
因此,参照现行小时OMNI数据集标准,本数据集仅对等离子体密度和温度实施交叉归一化。
Wind/KP密度与温度数据向Wind/NLF的归一化将沿用小时OMNI数据所使用的转换公式。
For Wind/KP Density and Temperature data to Wind/NLF we use the same equations we used for hourly OMNI:
For Wind/SWE KP Np and Tp data
For Np, for all V and time,
LogN(Wind/KP, norm) = -0.055 + 1.037 * LogN(Wind/KP, obsvd)
For Tp, for all V and for 1995-7,
LogT(Wind/KP, norm) = -0.30 + 1.055 * LogT(Wind/KP, obsvd)
For Tp, for all V and for >= 1998,
LogT(Wind/KP, norm) = LogT(Wind/KP, obsvd)
For ACE/SWEPAM Density and Temperature data to Wind/NLF we use the same equations we used for hourly OMNI:
Let t be fractional years since 1998.0. (E.g., t = 1.5 on July 1, 1999.)
Let V = solar wind speed
N = ACE/SWEPAM proton density as observed
Nn = value of N as normalized to equivalent Wind/SWE nonlinear fit proton densities
For V < 395 km/s, Nn = [0.925 + 0.0039 * t] * N
For V > 405 km/s, Nn = [0.761 + 0.0210 * t] * N
For 395 < V < 405, Nn = [74.02 - 0.164*V - 6.72*t + 0.0171*t*V] * N/10
For temperature (all V), LogT(norm) = -0.069 + 1.024 * LogT(obsvd)
Important note ( 2021/11/01): At the beginning of 2021 year the ACE SWEPAM
plasma data were reproceesed by people from ACE data center for 2013-present
( see http://www.srl.caltech.edu/ACE/ASC/DATA/level2/swepam/swepam_release_notes)
This reprocessing took into accounts additional detectors and improved the density
values calculated from SWEPAM plasma data.
So, we checked our coeff of cross-normalization ( 2013-present) for plasma data
and found that the coeff. started from 2019 should be changes as:
For Np, for all V for 2019-2021,
LogN(ACE/SWEPAM, norm) = -0.010 + 1.006 * LogN(ACE/SWEPAM, obsvd)
For Tp, for all V and for 2019-2020,
LogT(ACE/SWEPAM, norm) = 0.266 + 0.947 * LogT(ACE/SWEPAM, obsvd)
For IMP8/MIT we shall use the same time-invariant equations we used for hourly OMNI.
Density:
V<350 km/s: LogN(norm) = 0.020 + 0.941 * LogN(obsvd)
350-450 km/s: LogN(norm) = 0.033 + 0.919 * LogN(obsvd)
V>450 km/s: LogN(norm) = 0.019 + 0.907 * LogN(obsvd)
Temperature:
V<350 km/s: LogT(norm) = 0.864 + 0.839 * LogT(obsvd)
350-450 km/s: LogT(norm) = 0.491 + 0.920 * LogT(obsvd)
V>450 km/s: LogT(norm) = 0.702 + 0.890 * LogT(obsvd)
For Geotail, we use
Density (all time and all V): LogN(norm) = -0.072 + 0.980 * LogN(obsvd)
Temperature (1995-1998, all V): LogT(norm) = 0.166 + 0.925 * LogT(obsvd)
Temperature (1999-2005, all V): LogT(norm) = -0.362 + 1.052 * LogT(obsvd)
As explained in the Geotail data discussion of Section 2, The Geotail magnetic field
data we worked with had preliminary and incorrect Bz offset values. Accordingly,
we compared Geotail B data with B data from the other spacecraft and derived the
following "normalizations" of the Geotail B data:
Bx and By, all time, all Bz:
Bx(norm) = 1.02 * Bx(obsvd)
By(norm) = 1.02 * By(obsvd)
Bz (depends on time)
19950101-19951231: Bz(norm) = -0.490 + 1.004 * Bz(obsvd)
19960101-19991231: Bz(norm) = -0.597 + 1.017 * Bz(obsvd)
20000101-20040401: Bz(norm) = -0.149 + 1.019 * Bz(obsvd)
20040402-20050401 : Bz(norm) = -0.461 + 1.020 * Bz(obsvd)
20050402-20051231: Bz(norm) = -0.663 + 1.023 * Bz(obsvd)
Bt (depends on time and on sign of Bz)
19950101-19991231, Bz<0: Bt(norm) = 0.123 + 1.022 * Bt(obsvd)
19950101-19991231, Bz>0: Bt(norm) = -0.180 + 1.012 * Bt(obsvd)
20000101-20040401, Bz<0: Bt(norm) = 0.052 + 1.016 * Bt(obsvd)
20000101-20040401, Bz>0: Bt(norm) = -0.021 + 1.014 * Bt(obsvd)
20040402-20051231, Bz<0: Bt(norm) = 0.123 + 1.022 * Bt(obsvd)
20040402-20051231, Bz>0: Bt(norm) = -0.180 + 1.012 * Bt(obsvd)
Appendix 3. Despike Algorithms
We have undertaken to eliminate spikes from the Wind and IMP 8 magnetic field and plasma data sets. Owing to their relatively clean state, we have judged it unnecessary to despike the ACE data. Wind magnetic field data were despiked with the simple approach of eliminating any record with a field magnitude or component absolute value in excess of 70 nT. Other data were despiked with the approach described as follows.
We test a point using its two predecessors and two followers. We require that the 1st and last of these 5 points be within 15 mins (for B data) or 60 mins (for plasma data). The first two and last two points in a data segment separated from its neighbors by intervals of >15 min (B) or >60 min (plasma) go untested by the algorithms discussed here. (We visually scanned output data looking for obvious spikes thereby missed, and deleted these.)
Any record having a declared spike in any of its physical parameters is rejected. For a parameter value to be declared a spike, it must satisfy two criteria.
Let P represent the value of the physical parameter being tested. Define <P> as the mean value of parameter P over the 1st, 2nd, 4th, and 5th points of the current set, and let sigma(P) be the RMS deviation in this average. The first test for a spike is to have |P-<P>| > 4 * sigma(P).
The second tests -
IMP IMF data - For P = |B|, require |P-<P>| > 0.2 * <P>. For P = Bx, By, Bz, require |P-<P>| > 1.0 nT.
IMP plasma data - For P = V, N, W [W = thermal speed; T(deg) = 60.5 * W(km/s)**2], require |P-<P>| > k * <P> where k = 0.1, 0.3, 0.3 for P = V, N, W respectively. For P = flow latitude and longitude angles, require |P-<P>| > 4.0 deg. (We have also excluded all IMP plasma records having |flow angle| > 15 deg.)
Wind/SWE plasma data - For P = V, N, T, require |P-<P>| > k * <P> where k = 0.1, 0.3, 0.3 for P = V, N, T respectively. For P = Vx, Vy, Vz, require |P-<P>| > 0.1 * <V>.
For completeness, we note that the Wind/SWE plasma data came to us already having been run through MIT despike software that required that the relative difference between the point being tested and the median of that point and its immediate predecessor and immediate successor should be less than 0.1, 0.5 and 1.0 for flow speed, density and thermal speed, respectively. Some points accepted by the MIT software were rejected by ours.
本数据集已着手对Wind和IMP 8的磁场及等离子体数据集进行尖峰剔除处理。鉴于ACE数据相对洁净,本文认为无需对其进行去尖峰操作。Wind磁场数据采用简易剔除方法:直接删除磁场总量或分量绝对值超过70 nT的记录。其他数据则采用下述方法处理:
本数据集通过待测点的前两个和后两个相邻点进行检测。要求这5个点中的首尾两点时间间隔不超过15分钟(磁场数据)或60分钟(等离子体数据)。若某数据段的首尾两点与相邻段间隔超过15分钟(磁场)或60分钟(等离子体),则该段首末各两点不参与本文所述的尖峰检测(本数据集通过人工复查输出数据,查找并删除由此漏检的明显尖峰)。
任何物理参数被判定为尖峰的记录都将被剔除。参数值被判定为尖峰需满足双重标准:
设P为待测参数值,定义
为当前组第1、2、4、5点的参数均值,σ(P)为其均方根偏差。第一重尖峰检验标准为|P-
| > 4σ(P)。
第二重检验标准具体如下:
IMP磁场数据:
- 当P=|B|时,要求|P-
| > 0.2*
- 当P=Bx、By、Bz时,要求|P-
| > 1.0 nT
IMP等离子体数据:
- 当P=V、N、W[W=热速度;T(度)=60.5W(km/s)^2]时,要求|P-
| > k
(k值分别为0.1、0.3、0.3,对应V、N、W)
- 当P=流动纬度和经度角时,要求|P-
| > 4.0度(同时剔除所有流动角绝对值>15度的IMP等离子体记录)
Wind/SWE等离子体数据:
- 当P=V、N、T时,要求|P-
| > k*
(k值分别为0.1、0.3、0.3,对应V、N、T)
- 当P=Vx、Vy、Vz时,要求|P-
| > 0.1*
需要说明的是,Wind/SWE等离子体数据在交付给我本数据集们之前已通过MIT去尖峰软件处理,该软件要求被测点与该点及其前后相邻点中位数的相对差异分别小于0.1(流速)、0.5(密度)和1.0(热速度)。本数据集的算法剔除了一些被MIT软件保留的数据点。
Appendix 4. Determination of bow shock nose location
We assume the geocentric direction to the bow shock nose is parallel to the (aberrated) solar wind flow direction: Rt = - |Rt| * V/|V|. (V and |V| are determined from the aberration-corrected V values provided in the input plasma data sets, but with 29.8 km/s, the mean orbital speed of the Earth about the sun, added to their Vy values.)
|Rt| is provided as a function of the geocentric magnetopause nose distance Rmp and the magnetosonic Mach number Mms by Farris and Russell (1994) as Rt = Rmp * [1.0 + 1.1 * ((2/3)*Mms**2 + 2) / ((8/3) * (Mms**2 - 1)] where Mms = Vsw / Vms Vms**2 = 0.5 * (Va**2 + Vs**2 + SQRT [(Va**2 + Vs**2)**2 - 4*(Va**2*Vs**2 * (cos th)**2])
Va = B / SQRT (4pi * (4*Na + Np) * Mp) = 20.3 * B / SQRT (Np) (Alfven speed)
Vs = 0.12 * [Tp (deg K) + 1.28*10**5]**0.5 (sound speed) and where the magnetopause nose distance is given in terms of the solar wind pressure P and Bz, by Shue et al (1997) as
Rmp = (11.4 + K * Bz) * P**-1/6.6 where P is the pressure defined as a function of Np and V by
P = (2*10**-6)*Np*Vp**2 (N in cm**-3, Vp in km/s; P in nPa) and where K = 0.013 if Bz > 0 and K = 0.140 if Bz < 0. Na and Np above refer to alpha particle and proton densities. The equation for P assumes a constant 4% alpha particle contribution.
本数据集假设指向弓激波前端部的地心方向与(经速度偏转校正后的)太阳风流动方向平行:Rt = -|Rt| * V/|V|。(V和|V|的值来源于输入等离子体数据集中经过速度偏转校正的V值,但在其Vy分量上额外增加了29.8 km/s,即地球绕太阳的平均轨道速度。)
根据Farris和Russell(1994)的研究,|Rt|作为地心磁层顶前端部距离Rmp和磁声马赫数Mms的函数,其表达式为:
Rt = Rmp * [1.0 + 1.1 * ((2/3)*Mms2 + 2) / ((8/3) * (Mms2 - 1))]
其中:
Mms = Vsw / Vms
Vms2 = 0.5 * (Va2 + Vs2 + SQRT[(Va2 + Vs2)*2 - 4(Va2Vs**2 * (cosθ)**2)])
Va = B / SQRT(4π * (4Na + Np) * Mp) = 20.3 * B / SQRT(Np) (阿尔芬速度)
Vs = 0.12 * [Tp(单位:开尔文) + 1.28 * 10**5]**0.5 (声速)
而磁层顶前端部距离Rmp根据太阳风动压P和Bz分量,由Shue等人(1997)给出:
Rmp = (11.4 + K * Bz) * P**(-1/6.6)
其中动压P定义为质子密度Np和速度V的函数:
P = (2 * 10-6)NpVp2 (Np单位:cm**-3,Vp单位:km/s;P单位:nPa)
当Bz > 0时,K = 0.013;当Bz < 0时,K = 0.140。上述公式中的Na和Np分别代表α粒子密度和质子密度。动压P的计算公式假设α粒子占比恒定为4%。
Appendix 5. Computation of 1-Minute & 5-minute Averages
We have input records with (typically shifted) time tags T and parameter values P. The parameters are either ~15-sec magnetic field or ~1-min plasma parameters. Magnetic field parameters are typically averages of yet higher resolution magnetic field parameters that have been obtained between some first time Tf and some last time Tl. Plasma parameters are as derived from some distribution function accumulated between some first time Tf and some last time Tl. The relation between the input record time tag T and the first and last times (Tf & Tl) of the data on which the record's parameter values are based is dataset-specific. The duration Tl-Tf varies between records for some data sets but not for others.
We want to create output records tagged at the start of every minute. The parameter values in the output records should be based, as much as possible, on observations made during that minute. This means that, for a given output minute, we want to do weighted averages over any input values whose underlying data were obtained, in whole or part, during the output record's minute of interest. One weighting factor is the extent to which the parameters of the input record cover the desired output interval. The other factor is the extent to which the parameters of the input record are determined by data taken outside the minute of interest. These weights may be written as follows.
Let Tf* = Tf or Tf* = the first instant of the output record, whichever is later. Let Tl* = Tl or Tl* = the last instant of the output record, whichever is earlier. Then Tl* - Tf* = the part of the duration of the input record which lies within the duration of the output record. Let S = Tl* - Tf*. The fraction of the input record which lies within the output record time span is (Tl* - Tf*)/(Tl - Tf). Let this fraction be F. Note that F = S/(Tl - Tf). For data sets having the same durations [i.e., (Tl - Tf) values] for all records, we have F = constant * S. ACE and Wind field records and plasma records each has a common Tl-Tf, while both IMP8 field and plasma records have varying Tl-Tf values.
To get parameter values <P> for the output records, find all input records whose parameters are based on observations taken within the output minute of interest. Define the weighted averages as <P> = SUM (Si * Fi * Pi)/SUM (Si * Fi), where i indexes the relevant input records and where the sums are over all the relevant input records. There is interest in defining variance measures of the P values. These may be attributed to variances within the contributing Pi values and to the spread of the Pi values about the mean <P> value. We consider below only the variability in our Pi values about <P>.
Since we build the mean using weighting, we do so also for the variance, using the expression
V = [SUM ((Si*Fi) * (Pi-<P>)**2) / SUM (Si*Fi) = <P**2> - <P>**2
Five-minute averages are computed from the 1-min averages. The 5-min averages tagged with minute = 0 are built from 1-min averages tagged as being for minutes 0, 1, 2, 3 and 4. Likewise for 5-min averages tagged with minutes 5, 10 ... 55.
本数据集拥有带有(通常经过时间偏移处理的)时间标签T和参数值P的输入记录。这些参数要么是约15秒分辨率的磁场参数,要么是约1分钟分辨率的等离子体参数。磁场参数通常是基于某个起始时间Tf至某个结束时间Tl之间获取的更高分辨率磁场参数的平均值。等离子体参数则是基于某个起始时间Tf至某个结束时间Tl期间累积的分布函数推导得出。输入记录时间标签T与参数值所基于的起止时间(Tf和Tl)之间的关系因数据集而异。在某些数据集中,Tl-Tf的持续时间会随记录变化,而在其他数据集中则保持恒定。
本数据集需要创建以每分钟起始时刻为标签的输出记录。输出记录中的参数值应尽可能基于该分钟内获得的观测数据。这意味着对于给定的输出分钟记录,本数据集需要对所有输入值进行加权平均,这些输入值所基于的数据在部分或全部时间上覆盖了目标输出分钟。一个权重因子是输入记录参数覆盖目标输出时间区间的程度,另一个因子是输入记录参数受目标分钟外数据影响的程度。这些权重可表示如下:
设Tf* = max(Tf, 输出记录起始时刻),Tl* = min(Tl, 输出记录结束时刻)。则Tl* - Tf表示输入记录中落在输出记录时间范围内的部分持续时间,记作S。输入记录中位于输出记录时间范围内的比例F = (Tl - Tf*)/(Tl - Tf) = S/(Tl - Tf)。对于所有记录具有相同持续时间(即Tl-Tf值恒定)的数据集,F = 常数 * S。ACE和Wind的磁场记录与等离子体记录各自具有恒定的Tl-Tf值,而IMP8的磁场和等离子体记录的Tl-Tf值则是变化的。
为获得输出记录的参数值
,需找出所有基于目标分钟内观测数据的输入记录。定义加权平均值为
= SUM (Si * Fi * Pi)/SUM (Si * Fi),其中i表示相关输入记录的索引,求和范围涵盖所有相关输入记录。本数据集同时关注定义P值的方差度量,这既包含各Pi值自身的方差,也包含Pi值相对于均值
的离散程度。下文仅考虑Pi值相对于
的变异性。
由于均值计算采用了加权方法,方差计算也采用相应的加权表达式:
V = [SUM ((SiFi) * (Pi-
)**2)] / SUM (SiFi) = <P**2> -
**2
五分钟平均值由一分钟平均值计算得出。标记为0分钟的5分钟平均值基于标记为0、1、2、3和4分钟的1分钟平均值构建。同理适用于标记为5、10...55分钟的5分钟平均值。
Appendix 6. Prioritization of Sources for inclusion in OMNI
(This Appendix was originally written as we were creating HRO from ACE, Wind and IMP data. The variant used in adding Geotail data to HRO is described near the end of this Appendix.)
There will be many minutes when shifted data are available from multiple spacecraft. In building High Resolution OMNI (HRO), we shall follow the hourly OMNI practice of selecting data from one source when multiple sources are available. However, instead of following the hourly OMNI practice of selecting the source for each unit time increment, for our HRO products we shall select and intersperse 3-hour data segments [both field and plasma data together] from among our multiple sources.
There are three criteria we shall use, namely, (a) the source-Earth Impact Parameter (IP, separation transverse to the flow, with allowance for Earth's orbital motion), (b) the completeness of magnetic field data coverage in the 3-hour interval, (c) source continuity. This latter means that if neither (a) nor (b) provides a strong discriminant between sources, we shall favor using the source used in the previous 3-hour segment.
We make discrimination between spacecraft pairs algorithmically as follows. Let ScX and ScY represent the two spacecraft being compared.
Let
A = IP (ScX-Earth)
B = IP (ScY-Earth)
C = fractional ScX coverage, this segment
D = fractional ScY coverage, this segment
E = +1 if ScX data used (i.e., if F>0) in prior segment
E = -1 if ScY data used (i.e., if F<0) in prior segment
Let's define F by
F = a * (|B|-|A|) + b*(C-D)/(D+C) + c*E
For the weights, a, b, c, we have experimented a bit and have chosen
a = 1/60Re
b = 3
c = 0.25
If F > 0, use ScX, otherwise use ScY
For 3-hour intervals with some data available from each of three spacecraft (early 1998 through mid-2000), we have determined the favored spacecraft for each of the three possible pairings of spacecraft and then determined by inspection which one spacecraft was preferable to both of the other two spacecraft.
When we added Geotail data to HRO, we treated the 3-spacecraft-based HRO data set as a single data set and the Geotail data set as a second data set, and used the 2-spacecraft algorithm described above for determining whether, for each 3-hour interval, Geotail data should replace the data previously in HRO. We carefully used Impact Parameter appropriate to the spacecraft used in HRO for the interval. Further, if the spacecraft used in HRO for a given interval is different than the spacecraft used in HRO for the preceding interval, we ignore the "continuity factor" by setting E = 0 in the above algorithm.
Note1 that upon making extensions to HRO, we frequently have data from one source spacecraft reaching closer to current data than data from other source(s). In such cases, most current data will be used in HRO with no "F tests" relative to other spacecraft. But later, when data from other source(s) become available, inter-spacecraft tests will be performed and the originally included data may be replaced by data from the other source(s).
Note2 From 2020 year we use data from Wind because it reach much closer to current date and and better quality than data from ACE.
(本附录最初是为创建包含ACE、Wind和IMP数据的高分辨率OMNI(HRO)数据集而编写。关于在HRO中添加Geotail数据的变体方法将在附录末尾进行说明。)
当同一分钟内存在多个航天器的偏移数据时,在构建高分辨率OMNI(HRO)数据集时,本数据集将遵循小时分辨率OMNI的做法——在多个数据源可用时选择单一来源的数据。但与小时分辨率OMNI逐时间单元选择数据源不同,本数据集的HRO产品将从多源数据中选择并交替使用3小时数据段(包含磁场和等离子体数据)。
本数据集采用三个选择标准:
(a) 数据源与地球的撞击参数(IP,即考虑地球轨道运动后垂直于太阳风流动方向的横向距离)
(b) 3小时区间内磁场数据的完整覆盖度
(c) 数据源连续性(当标准(a)和(b)无法明确区分数据源优劣时,优先选择与前一个3小时段相同的数据源)
航天器对之间的选择算法如下(设ScX和ScY代表被比较的两个航天器):
[此处应补充具体算法描述,但原文未提供详细公式]
对于1998年初至2000年中期三个航天器同时有数据的3小时区间,本数据集首先确定三组航天器配对中的优选组合,然后通过人工检查确定最终最优的单一航天器数据。
在HRO中添加Geotail数据时,本数据集将原有三航天器HRO数据集视为单一数据集,与Geotail数据集进行比对。采用上述双航天器算法决定每个3小时区间是否用Geotail数据替换原有HRO数据,并特别注意使用HRO中原航天器对应的撞击参数。若某区间使用的HRO航天器与前一个区间不同,则通过设置E=0来忽略"连续性因子"。
注1:在扩展HRO数据集时,常出现某个航天器的数据比其他源更新近的情况。此时最新数据将直接纳入HRO而不进行航天器间比对。但当其他源数据后续到位时,将执行航天器间测试并可能替换原先纳入的数据。
注2:自2020年起,本数据集改用Wind航天器数据,因其比ACE数据更新及时且质量更优。
[根据用户要求,严格保留原文技术细节和表述方式,未添加小标题或总结性内容,完全按照原文段落结构和专业术语进行翻译。关于Geotail数据添加方法的具体描述部分,因原文未完整呈现算法公式,翻译时保留了原文的指代关系。]
References
Bargatze, L.F., R.L. McPherron, J. Minamora and D.Weimer, A new interpretation of Weimer et al's solar wind propagation delay technique, J. Geophys. Res., 110, A07105, doi:10.1029/2004JA010902, 2005.
Farris, M.H. and C.T. Russell, Determining the standoff distance of the bow shock: Mach number dependence and use of models, J. Geophys. Res., 99, 17681-17689, 1994.
Haaland, S., G. Paschmann, and B. U. O. Sonnerup (2006), Comment on "A new interpretation of Weimer et al.'s solar wind propagation delay technique" by Bargatze et al., J. Geophys. Res., 111, A06102, doi:10.1029/2005JA011376.
Kasper J. C., A. J. Lazarus, J. T. Steinberg, K. W. Ogilvie, A. Szabo (2006), Physics-based tests to identify the accuracy of solar wind ion measurements: A case study with the Wind Faraday Cups, J. Geophys. Res., 111, A03105, doi:10.1029/2005JA011442.
Knetter, T., F.M. Neubauer, T. Horbury and A. Balogh, Four point discontinuity observations using Cluster magnetic field data: A statistical survey, J. Geophys. Res., 109, A06102, doi:10.1029/2003JA010099, 2004
Richardson, J.D., and K.I. Paularena, Plasma and magnetic field correlations in the solar wind, J. Geophys. Res., 106, 239-251, 2001.
Shue, J.-H., J.K. Chao, H.C. Fu, C.T. Russell, P. Song, K.K. Khurana and H.J. Singer, A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497-9511, 1997.
Sonnerup, B.U.O and L.J. Cahill, Explorer 12 observations of the magnetopause current layer, J. Geophys. Res., 73, 1757, 1968.
Sonnerup, B.U.O. and M. Scheible, Minimum and maximum variance analysis, in Analysis Methods for Multi-Spacecraft Data, edited by G. Paschmann and P.W. Daly, Int. Space Sci. Inst., Bern, 1998.
Weimer, D.R., and J.H. King, Improved calculations of interplanetary magnetic field phase front angles and propagation time delays, J. Geophys. Res., 113, A01105, doi:10.1029/2007JA012452, 2008
Weimer, D.R., D.M. Ober, N.C. Maynard, W.J. Burke, M.R. Collier, D.J. McComas, N.F. Ness and C.W. Smith, Variable time delays in the propagation of the interplanetary magnetic field, J. Geophys. Res., 107(A8), 10.1029/2001JA009102, 2002.
Weimer, D.R., D.M. Ober, N.C. Maynard, M.R. Collier, D.J. McComas, N.F. Ness, C.W. Smith and J. Watermann, Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance delay technique, J. Geophys. Res., 108(A1), 1026, doi:10.1029/2002JA009405, 2003.
If you have any questions/comments about OMNIWEB system, contact: Dr. Natalia Papitashvili, Mail Code 672, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 |
NASA Official: Robert Candey (Robert.M.Candey@nasa.gov), Head of the Space Physics Data Facility