行星际空间的磁流体动力激波:理论综述

Magnetohydrodynamic Shocks in the Interplanetary Space:
a Theoretical Review
( Part 2 )

​​​​​​​Magnetohydrodynamic Shocks in the Interplanetary Space: a Theoretical Review | Brazilian Journal of Physics

Magnetohydrodynamic Shocks

1. The Rankine-Hugoniot Equations for MHD Discontinuities

 间断 MHD 的 RH 方程 

A ​​shock​​ is formed in a medium when a wave suffers a ​​discontinuity​​ in which its main parameters change, such as the ​​fluid density, temperature (pressure), and velocity​​ [7, 9, 49]. A ​​necessary condition​​ is that the ​​relative speed between the shock and the fluid flow​​ has to be ​​greater than the sound speed​​ in the non-shocked side of the discontinuity. Also, with the increase of pressure and temperature, one can affirm that the ​​entropy increases beyond the shock​​, which indicates that the ​​kinetic energy of the wave​​ gives rise to the ​​increase in thermal energy​​ of the shocked fluid.

Such descriptions are valid for a ​​regular fluid​​, where particles change energy and momentum due to ​​collisions​​. In the case of the ​​solar wind​​, average densities are typically ​​5 particles per cm³ at 1 AU​​. With ​​mean free path​​ of the order of the dimensions of the medium, which is approximately ​​1 AU​​, calculated from kinetic theory, ​​collisions in the plasma are unlikely to occur​​ [52]. Instead, ​​momentum and energy are transmitted among particles due to the presence of the magnetic field​​, which makes the process even more complicated. Now, not only the ​​magnetic field magnitude​​ matters but also its ​​direction in relation to the shock normal​​ is important [9].

The presence of the magnetic field also adds two other complications:

  1. First, the plasma does not have only a typical speed such as the ​sound speed​, since the concepts of ​​Alfvén speed​​ and the ​​fast magnetosonic speed​ are necessary to explain the wave behavior of the plasma.
  2. Second, the ​​shock geometry​​ plays an important role in the shock physics since the ​​magnetic field vector orientation​​ in relation to the shock normal has different consequences when this angle is ​​large or small​​. This last feature will be discussed further.

As a result, a shock only exists when its ​​relative speed between the shock and the medium is larger than the magnetosonic speed​​, or according to expression (45), when ​magnetosonic Mach number ​M_MS ≥ 1​ [9].

fluid speed v' )

The ​​Rankine-Hugoniot (RH) jump conditions​​ are derived from the ​​MHD macroscopic equations​​ written in conservative forms. These equations are ​(30), the mass conservation equation​​, ​​(31), the momentum equation​​, and ​​(38), the energy equation​​, written slightly different after some minor manipulations:

当波在介质中经历不连续性时,会形成激波,此时其主要参数(如流体密度、温度(压力)和速度)发生突变。​一个必要条件是激波与流体流动之间的相对速度必须大于不连续性未受扰动一侧的声速。​此外,随着压力和温度的升高,可以确认激波后熵增加,这表明波的动能导致受扰动流体的热能增加。

这种描述适用于常规流体,其中粒子因碰撞而改变能量和动量。对于太阳风而言,在1天文单位(AU)处的平均密度通常为每立方厘米5个粒子。根据动力学理论计算,平均自由程与介质尺度(约1 AU)同量级,因此等离子体中几乎不可能发生碰撞。相反,​由于磁场的存在,动量和能量在粒子间传递​,这使得过程更加复杂。此时,​不仅磁场强度重要,其相对于激波法线的方向也很关键​。

磁场的存在还带来两个额外复杂性:
首先,等离子体不仅具有典型的声速,还需要阿尔芬速度快磁声速的概念来解释其波动行为
其次,​激波几何形状在激波物理中起重要作用​​,因为磁场矢量相对于激波法线的方向在不同角度(大或小)下会产生不同后果。后一特性将在后文进一步讨论。​

最终,只有当激波与介质的相对速度大于磁声速时(或根据表达式(45)当 magnetosonic Mach number M_MS ≥ 1时),激波才存在​​。

Rankine-Hugoniot(RH)跳跃条件源自以守恒形式表示的磁流体力学宏观方程。这些方程包括质量守恒方程(30)、动量方程(31)和经过小幅调整后略有不同的能量方程(38)

 

In order to relate ​​plasma parameters​​ in ​​upstream (unshocked plasma)​​ and ​​downstream (shocked plasma)​​ regions, let us consider a straightforward method as described in reference [20]. ​​Figure 1​​ represents a plasma flowing through a very thin surface, with thickness ​​h → 0​​, across an ​​MHD discontinuity​​ of areas ​​A₁ (unshocked side)​​ and ​​A₂ (shocked side)​​ along, say, the ​​normal n​​, which is perpendicular to both surfaces. Integrating ​​equation (46)​​ and applying the ​​Gauss theorem​​ to its second term, we get:

Fig. 1  Schematic representation of a tiny box across the surface of an MHD discontinuity. Assuming the box thickness to be infinitely small, or h → 0, its volume shrinks to zero. Figure adapted from reference [20]

为了关联​​上游(未受扰等离子体)​​和​​下游(受激等离子体)​​区域的​​等离子体参数​​,本文采用参考文献[20]中描述的简明方法。​​图1​​展示了等离子体流过一个极薄表面(厚度​​h → 0​​)的情形,该表面沿法向​​n​​(垂直于两侧面)形成​​MHD间断​​,两侧面积分别为​​A₁(未受激侧)​​和​​A₂(受激侧)​​。对​​方程(46)​​积分并对其第二项应用​​高斯定理​​,得到:

Now due to the ​​very small box thickness​​, we can consider both volumes ​​V₁​​ and ​​V₂​​ shrinking to zero. This argument implies that the ​​first two terms in (49) vanish​​. Assuming both surfaces are parallel to each other, ​​A₁ = A₂​​. The ​​scalar products​​ in the two remaining parts of (49) are ​​negative for A₁​​ and ​​positive for A₂​​ due to the ​​normal vector direction​​. We also define two unitary vectors, ​​n̂​​, normal to the shock surface, and ​​t̂​​, tangential to the normal surface. Therefore, ​​(49)​​ can be written in a ​​conservative form​​ as

Applying the same method to the other ​​(47–48)​​, the ​​Rankine-Hugoniot (RH) jump conditions​​ for conservation of ​​mass, momentum, and energy​​ are written as:

由于​​盒体厚度极小​​,可认为体积​​V₁​​和​​V₂​​均趋近于零。这意味着​​(49)式的前两项消失​​。假设两表面平行,则​​A₁ = A₂​​。根据法向量方向,(49)式剩余两项的​​标量积​​在​​A₁侧为负​​,在​​A₂侧为正​​。定义两个单位向量:​n̂​​(垂直于激波表面)和 ​​t̂​​(切于法向表面)。因此,(49)式可改写为​​守恒形式​​:

将相同方法应用于​​(47)-(48)式​​,得到​​质量、动量和能量守恒​​的​​Rankine-Hugoniot (RH) 跳跃条件​

The parameters of these equations are the same as those found in the ​​MHD equations​​: ​​v​​ is the ​​flow speed in the discontinuity reference frame​​, the indices ​​n​​ represent ​​normal quantities​​, and the others are regular plasma parameters. Quantities between ​​square brackets, [(Ψ)] = 0​​, indicate that they are ​​conserved along the discontinuity stream​​, i.e., ​​[Ψ] = Ψ₂ − Ψ₁​​. ​Equation (51)​​ represents the ​​conservation of mass flux​​, ​​(52)​​ represents the ​​conservation of momentum flux​​, and ​​(53)​​ represents the ​​energy conservation​​.

这些方程的参数与​​MHD方程​​一致:​​v​​表示​​间断参考系中的流速​​,下标​​n​​代表​​法向分量​​,其余为常规等离子体参数。​​方括号量[(Ψ)] = 0​​表示沿间断流守恒,即​​[Ψ] = Ψ₂ − Ψ₁​​。​方程(51)​​描述​​质量通量守恒​​,​​(52)​​描述​​动量通量守恒​​,​​(53)​​描述​​能量守恒​​。

These equations can still be written in a more straightforward way. The ​​electric field in (53)​​ can be eliminated by using ​​E = −v × B​​ and the ​​triple vector product identity (F × G) × H = (F · H)G − (G · H)F​​. The ​​scalar products of (52)​​ with the unitary vectors ​​n̂​​ and ​​t̂​​ generate ​​(55)​​ and ​​(56)​​ below. The ​​Maxwell equations​​ require that the ​​normal component of the magnetic field​​ and the ​​tangential component of the electric field​​ are ​​conserved through the discontinuity surface​​ [23]. Then, the ​​complete set of the RH jump conditions​​ is given by

这些方程可进一步简化:通过​​E = −v×B​​和​​三重矢积恒等式 (F×G)×H = (F·H)G − (G·H)F​​消去(53)式中的​​电场​​。将(52)式与单位向量​​n̂​​和​​t̂​​作​​标量积​​,得到下文(55)和(56)式。根据​​麦克斯韦方程​​,​​磁场的法向分量​​和​​电场的切向分量​​必须​​在间断面上守恒​​。完整的​​ RH 跳跃条件组​​为:

It should be mentioned at this point that ​​MHD shock waves​​ correspond to only ​​one type of discontinuities​​ found in the solar wind. ​​Shock waves​​ correspond to the ​​most complicated type of MHD discontinuities​​ due to the fact that ​​all plasma parameters in the RH equations may vary​​. The other solar wind discontinuities are the ​​contact discontinuity (CD)​​, the ​​tangential discontinuity (TD)​​, and the ​​rotational discontinuity (RD)​​, first suggested by a theoretical work [30]. Properties of different discontinuities in the solar wind have been discussed by several authors [14, 20, 22, 57, 64].

需特别说明,​​MHD激波​​仅是太阳风中多种间断类型之一。由于​​RH方程中所有等离子体参数均可变化​​,激波属于​​最复杂的MHD间断类型​​。其他太阳风间断包括:​​接触间断(CD)​​、​​切向间断(TD)​​和​​旋转间断(RD)​​——后者由理论工作[30]首次提出。多位学者[14,20,22,57,64]已探讨过这些间断的特性。

There is ​​no plasma flow across a CD surface​​, which means ​​v_n = 0​​. However, the ​​plasma density suffers jumps​​ across the CD surface, or ​​[ρ] ≠ 0​​. In the particular case of a CD in which ​​B_n = 0​​, this discontinuity is called a ​​TD​​. This difference was observed with ​​Mariner 5 data​​ [58]. In a ​​TD​​, the ​​plasma flow and magnetic field are parallel​​ to the discontinuity surface. An ​​RD​​ has ​​no jump in plasma density, [ρ] = 0​​, but ​​plasma flows across an RD surface​​. ​​Thermal pressure does not change​​ across an RD surface, or ​​v_n ≠ 0​​. ​​Table 1​​ summarizes the main properties of ​​CDs, TDs, RDs, and shock waves​​.

​CDs​​ are much more difficult to be identified due to the ​​rapid diffusion of plasma along the surface magnetic field lines​​, and the ​​jump becomes very smooth​​ [8, 14]. However, more recently, the ​​possibility of CD observations​​ has been brought about [21]. Based on the ​​rarity of identification​​ and consequently the ​​observation of solar wind discontinuities other than MHD shock waves​​, the former does not take part in the scope of this review. Therefore, from now on, we will only consider ​​MHD shock waves propagating in the interplanetary space​​ in our ​​MHD discontinuity analyses​​.

CD表面无等离子体流动​​(即​​ v_n = 0​​),但​​等离子体密度会突变​​(​​[ρ] ≠ 0​​)。当​​CD满足 B_n = 0​​时,称为​​TD​​,该差异已被​​Mariner 5数据证实。在​​TD​​中,​​等离子体流与磁场均平行于间断面​​。​​RD​​的 ​​[ρ] = 0​​,但存在​​跨表面的等离子体流动​​(​​v_n ≠ 0​​),且​​热压力不变​​。​​表1​​总结了​​CD、TD、RD和激波​​的主要特性。

​CD​​的识别尤为困难,因为​​等离子体会沿表面磁力线快速扩散​​,导致​​跃变趋于平滑​​[8,14]。但近期研究[21]提出了​​观测CD的可能性​​。鉴于​​非激波型太阳风间断的罕见性​​,本文后续将仅关注​​行星际空间传播的MHD激波​​。

2. Shock Normal Decomposition

 激波法向量分解 

To describe how ​​IP shocks​​ propagate in the ​​interplanetary medium​​, it is necessary to define the ​​shock normal​​ in terms of ​​polar angles ​, the angle between the shock normal and the ​​Sun-Earth line​​, and ​​clock angles ​, the angle between the shock normal with the ​​Y axis​​. The ranges of these angles are and , respectively, as described elsewhere [37, 39, 65]. In ​​spherical coordinates​​, the ​​normal components​​ of the vector ​​n = (nₓ, nᵧ, n_z)​​ are given by the ​​orthonormal system of coordinates​​:

which satisfy ​​|n| = 1​​ as a ​​normalization condition​​. Therefore, translated from the ​​shock frame of reference​​ to a ​​Cartesian frame of reference​​ defined in ​​GSE coordinates​​, the ​​magnetic field​​ (and also the ​​speed​​) is written as:

The ​​RH equations​​ are solved in the special ​​frame of reference​​ in which the shock is ​​stationary​​. The ​​magnetic field is invariant​​ because the system is ​​non-relativistic​​, so ​​B′ = B​​ where prime quantities are in the frame of reference where observations are made. All calculations are computed in the ​​Hoffmann-Teller frame of reference​​, where ​​v ∥ B​​ and as a result, the ​​electric field vanishes​​ in this reference frame [15]. Then it is necessary to calculate a ​​Galilean transformation​​, from the ​​shock frame of reference​​ to another frame of reference that may be a ​​spacecraft​​ or the ​​Earth​​. Therefore, defining the ​​shock speed​​ as ​​v_s = v_s*n​​, with ​​n​​ represented by (60), this ​​transformed velocity​​ is given by:

要描述​​行星际激波(IP shocks)​​在​​行星际介质​​中的传播,需要定义​​激波法向​​的两个角度参数:​​极角​​激波法向与​​日地连线​​的夹角)和​​时钟角​​激波法向与​​Y轴​​的夹角。这两个角度的范围分别为。在​​球坐标系​​中,向量​​n=(nₓ, nᵧ, n_z)​​ 的​​法向分量​​由​​正交坐标系​​给出:

满足​​归一化条件|n|=1​​。因此,从​​激波参考系​​转换到​​GSE坐标系​​下的​​笛卡尔参考系​​时,​​磁场​​(及​​速度​​)可表示为:

RH方程​​在激波​​静止的参考系​​中求解。由于系统的​​非相对论性​​,​​磁场保持恒定​​(​​B′=B​​),带撇量表示观测参考系中的物理量。所有计算均在​​Hoffmann-Teller参考系​​中完成,其中​​v∥B​​,因此该参考系中​​电场为零​​[15]。需要通过​​伽利略变换​​将​​激波参考系​​转换到​​航天器​​或​​地球​​的参考系。定义​​激波速度v_s=v_s*n​​(其中n由式(60)表示),转换后的速度为:

3. Types of Shocks

 激波类型 

The following discussion about ​​types and classifications of shocks​​ is based on descriptions found in the literature [9, 30], and in a more recent review [64]. As has already been discussed, the ​​solar wind​​ has different ​​typical speeds​​. The ​​magnetosonic speed​​ depends both on the ​​sound speed​​ and the ​​Alfvén speed​​. When the ​​relative shock speed​​, calculated in the ​​shock frame of reference​​, is ​​greater than the magnetosonic speed​​, the shock is classified as a ​​fast shock​​. For the other case, the shock is said to be ​​slow​​. If the shock ​​propagates away from the Sun​​, it is classified as ​​forward​​. Then, if the shock ​​propagates toward the Sun​​, the shock is said to be ​​reverse​​, although all shocks propagate toward the Earth because they are ​​dragged by the solar wind​​ [46]. As a result, shocks can be ​​fast and slow forward​​, and ​​fast and slow reverse​​. ​​Figure 2​​ shows qualitatively how the ​​plasma parameters​​ vary after the shock takes place. In the case of ​​IP shocks​​ propagating in the ​​interplanetary space​​, ​​fast forward shocks (FFSs)​​ are more frequent and cause more ​​disturbances in the Earth's magnetosphere-ionosphere-thermosphere system​​ [5, 16, 26, 39, 42, 56]. ​​Plasma density​​, ​​magnetic field​​, ​​temperature​​, and ​​speed​​ have ​​positive jumps​​ in FFSs. In all cases, the ​​shock speed​​ is measured in the ​​Earth's or spacecraft's frame of reference​​. Although less frequent than fast shocks, ​​slow shocks​​ have also been observed in the solar wind [10, 12, 68, 69].

Fig. 2  Schematic variations of the parameters nPB, and v for the four types of interplanetary shocks. Upper panelsleft, fast forward, and right, slow forward shocks. Bottom panelsleft, fast reverse, and right, slow reverse shocks

关于​​激波类型与分类​​的讨论基于文献[9,30]和最新综述[64]。如前述,​​太阳风​​存在多种​​特征速度​​。​磁声速​​取决于​​声速​​和​​阿尔芬速​当​​激波相对速度​​(在激波参考系中计算)​​超过磁声速​​时,称为​​快激波​​;否则为​​慢激波​​。若激波​​远离太阳传播​​,称为​​前向激波​​;若​​朝向太阳传播​​,则为​​反向激波​​(但所有激波均被太阳风拖曳而传向地球)。因此激波可分为​​快/慢前向激波​​和​​快/慢反向激波​​。​​图2​​定性展示了激波通过后​​等离子体参数​​的变化。对于​​行星际空间​​中的​​IP激波​​,​​快前向激波(FFSs)​​更常见,且对​​地球磁层-电离层-热层系统​​的​​扰动更强​​。FFS中​​等离子体密度​​、​​磁场​​、​​温度​​和​​速度​​均呈现​​正向跃变​​。所有情况下,​​激波速度​​均在​​地球或航天器参考系​​中测量。虽然较少见,​​慢激波​​在太阳风中也有观测记录。

Figure 3​​ represents a real ​​FFS​​ observed by the ​​ACE satellite​​ on 23 June 2000 at 1226 UT and (234,36.6,-0.7)R_E GSE upstream of the Earth. Typically, ​​jumps in plasma parameters and magnetic field​​ associated with FFS are ​​very sharp​​, as can be seen in Fig. 3, from top to bottom: ​magnetic field​​, ​​thermal plasma pressure​​, ​​particle number density​​, ​​speed​​, and ​​dynamic pressure proportional to ρv²​​. The increase in the ​​dynamic pressure​​ is a result of the ​​shock compression​​ and ​​shock enveloping of the Earth's magnetosphere​ [11, 50, 59]. As a result, a ​​myriad of events​​ can be measured on the ground after the ​​impact of an FFS​​ [2, 71, 73].

Fig. 3  An FFS observed by ACE spacecraft on 23 June 2000 at 1226 UT. Jumps in all plasma parameters are step-like and positive. The increase of the dynamic pressure ρ v 2 indicates the occurrence of an IP shock as well

图3​​展示了​​ACE卫星​​于2000年6月23日12:26 UT在GSE坐标(234,36.6,-0.7)R_E位置观测到的真实​​FFS​​事件。FFS相关的​​等离子体参数与磁场跃变​​通常​​非常剧烈​​(见图3从上至下):​磁场​​、​​热等离子体压力​​、​​粒子数密度​​、​​速度​​以及​​与ρv²成正比的动压​。​动压增加​​源于​​激波压缩​​和​​激波对地球磁层的包裹效应,进而导致FFS撞击后地面可检测到​​大量事件

The presence of the ​​magnetic field vector​​ in the ​​space plasma​​ introduces an ​​additional complexity​​ in relation to an ordinary gas because the ​​angle between the magnetic field vector and the shock normal​​ plays an important role in determining ​​downstream plasma parameters​. Thus, an ​​IP shock​​ can be classified as either ​​perpendicular​​ or ​​oblique​​ [8, 9, 30]. A common choice is that for the former case, the angle between the magnetic field vector and the shock normal, the ​​obliquity θ​​, θ_Bn is​90°​​. In the latter case, θ_Bn is​45°​​. When this angle is ​​0°​​, the shock is said to be ​​parallel​​.​Figure 4​​ shows both ​​magnetic and velocity vectors​​ in the ​​shock frame of reference​​ for an FFS case. On the top panel, the ​​magnetic field​​ lies in the plane ​​perpendicular​​ to the plane containing the ​​shock normal​​. The ​​downstream magnetic field increases​​ and the ​​velocity decreases​​. The same occurs in the case of an ​​oblique shock​​, represented in the bottom panel of the same figure. Generally, the ​​shock normal orientation​​ is necessary to obtain θ_Bn, but it has been shown that it is possible to calculate the ​​shock obliquity​​ knowing only ​​upstream and downstream plasma parameters​​ [13].

Fig. 4  Schematic representation of fast forward shocks (FFSs) in the shock reference frame. a represents a perpendicular shock in which the magnetic field vector lies in the plane perpendicular to the shock normal, the tangential plane. In this case, the magnitude of the magnetic field downstream increases in relation to its upstream magnitude. The opposite occurs to the velocity of the medium. b shows an oblique shock, with the magnetic field lying in both planes. The medium velocity increases in this case. The shock normal is defined pointing to the downstream, low entropy region. Figure adapted from the literature [9]

空间等离子体​​中​​磁场矢量​​的存在,相较于普通气体引入了​​额外的复杂性​​,因为​​磁场矢量与激波法向的夹角​​对确定​​下游等离子体参数​​起着关键作用。因此,​行星际激波(IP shock)​​可分为​​垂直激波​​或​​倾斜激波。通常,前者定义为磁场矢量与激波法向的夹角(即​​倾斜角θ_Bn​​)为​​90°​​;后者θ_Bn为​​45°​​;当θ_Bn为​​0°​​时则称为​​平行激波​​。​图4​​展示了​​快前向激波(FFS)​​在​​激波参考系​​中的​​磁场与速度矢量​​分布。上图显示​​磁场​​位于​​垂直于激波法向​​的平面内,此时​​下游磁场增强​​而​​速度减小​​;下图展示的​​倾斜激波​​中,磁场同时存在于两个平面,但同样遵循上述规律。虽然通常需要​​激波法向方向​​来计算θ_Bn,但研究[13]表明仅通过​​上下游等离子体参数​​也能确定​​激波倾斜度​​。

图4​​ 激波参考系中快前向激波(FFSs)的示意图。(a) 垂直激波:磁场矢量位于与激波法向垂直的切平面内,下游磁场幅值增加而介质速度减小;(b) 倾斜激波:磁场同时存在于两个平面,介质速度增加。激波法向定义为指向下游低熵区域。

The ​​shock obliquity θ​​_Bn plays a significant role in ​​energetic particle acceleration​​ at ​​interplanetary traveling shocks​​ [31]. The ​​critical shock Mach number (Mc)​​ depends upon the ​​upstream plasma β​​ and the angle θ​​_Bn [17, 27]. If the shock has a ​​Mach number greater than Mc​​, the shock is said to be ​​supercritical​​. If the shock is supercritical, ​​electron resistivity​​ and ​​ion viscosity dissipations​​ may occur at the shock. Recently, it has been shown that approximately ​​1/3 of IP shocks driven by CMEs​​ are supercritical and ​​2/3 of IP shocks driven by CIRs​​ are supercritical [72].

倾斜角θ_Bn对​​行星际传播激波​​中的​​高能粒子加速​​具有重要影响。​​临界激波马赫数(Mc)​​取决于​​上游等离子体β​​和角度θ_Bn。当激波​​马赫数超过Mc​​时,称为​​超临界激波​​,此时可能发生​​电子电阻​​和​​离子粘性耗散​​。最新统计显示,约​​1/3的CME驱动IP激波​​和​​2/3的CIR驱动IP激波​​属于超临界。

Now let us take the ​​Earth's magnetosphere interaction​​ with the ​​solar wind​​. The first consequence of this interaction is the formation of a ​​bow shock​​ right in front of the Earth's magnetosphere [48]. ​​Figure 5​​ shows that the bow shock is the ​​diffuse hyperbolically shaped region​​ standing at a distance in front of the ​​magnetopause​​. The bow shock has a complicated ​​magnetic structure​​, with a ​​"foot"​​, a ​​"ramp"​​, and an ​​"overshoot"​​. ​​Overshoots​​ occur in the bow shock due to the fact that ​​jumps in magnetic field​​ often exceed those predicted by the ​​RH conditions​​ [33, 35, 47]. The inclined blue lines represent the ​​interplanetary magnetic field (IMF)​​. In this figure, the IMF lies in the ​​equatorial plane​​. The direction of the ​​shock normal​​ is indicated at two positions. Where it points ​​perpendicularly to the IMF​​, the character of the bow shock is ​​perpendicular​​. In the vicinity of this point where the IMF is ​​tangent to the bow shock​​, the shock behaves ​​quasi-perpendicularly​​. When the shock is ​​aligned with or against the IMF​​, the bow shock behaves as a ​​quasi-parallel shock​​. ​​Quasi-perpendicular shocks​​ are ​​magnetically quiet​​ compared to ​​quasi-parallel shocks​​ [3]. This is indicated here by the gradually increasing ​​oscillatory behavior of the magnetic field​​ when passing along the shock from the quasi-perpendicular part into the quasi-parallel part. Correspondingly, the behavior of the ​​plasma downstream​​ of the shock is ​​strongly disturbed​​ behind the quasi-perpendicular shock. The bow shock is often found to be ​​supercritical​​.

Fig. 5  Representation of the solar wind interaction with the Earth’s bow shock [28]. Quasi-perpendicular and quasi-parallel shocks are shown. Blue lines represent the IMF. The shocked region is the magnetosheath

分析​​地球磁层​​与​​太阳风​​的相互作用时,首先会在磁层前方形成​​弓激波​​。​​图5​​显示这种​​弥散双曲线形区域​​位于​​磁层顶​​前方,具有复杂的​​磁结构​​,包括​​"足部"​​、​​"斜坡"​​和​​"过冲"​​——后者因​​磁场跃变幅度​​常超过​​RH条件​​预测值而产生。图中蓝色斜线代表​​行星际磁场(IMF)​​,其位于​​赤道面​​内。当​​激波法向垂直于IMF​​时为​​垂直弓激波​​;IMF与弓激波相切时表现为​​准垂直激波​​;当激波与IMF​​同向或反向​​时则形成​​准平行激波​​。相较于​​准平行激波​​,​​准垂直激波​​的​​磁场更稳定​​,其过渡区可见​​磁场振荡行为逐渐增强​​,且​​下游等离子体​​受​​强烈扰动​​。弓激波通常处于​​超临界状态​​。

图5​​ 太阳风与地球弓激波相互作用的示意图。蓝色线代表IMF,激波区为磁鞘

Finally, when the shock is ​​supercritical​​, as is the case for the ​​bow shock​​, ​​electrons and ions are reflected​​ from it. ​​Reflection is strongest​​ at the ​​quasi-perpendicular shock​​ but particles can escape upstream only along the ​​magnetic field​​. Hence, the ​​upstream region​​ is divided into an ​​electron foreshock (yellow)​​ and an ​​ion foreshock​​ accounting for the ​​faster escape speeds of electrons​​ than ions. More details on the ​​shock behavior of the bow shock​​ can be found in [48], and the ​​interaction of solar wind discontinuities and interplanetary shocks​​ are discussed by [70].

当​​超临界激波​​(如弓激波)存在时,会发生​​电子与离子反射​​,其中​​准垂直激波​​的反射最强,但粒子仅能沿​​磁场线​​逃逸至上游,从而形成​​电子前兆区(黄色)​​和​​离子前兆区​​(反映电子更快的逃逸速度)。弓激波行为的更多细节见文献[48],太阳风间断与行星际激波的相互作用参见文献[70]

4. Sources of IP Shocks

 激波驱动源 

The two major ​​IP shock drivers​​ are named ​​coronal mass ejections (CMEs)​​ [18] and ​​corotating interaction regions (CIRs)​​ [43]. ​​CMEs​​ are known to be well correlated with ​​solar activity​​ [25], but such relation is not obvious for ​​CIRs​​ since their numbers do not vary noticeably throughout the ​​solar cycle​​ [24]. A schematic representation of an ​​IP shock driven by a CME​​ (or ​​ICME​​, which is a CME propagating in the interplanetary medium) is shown in ​​Fig. 6​​. ​​CMEs​​ are formed in the ​​Sun's corona​​, the upper layer of the Sun's atmosphere. Although the ​​corona​​ could be seen during ​​solar eclipses​​ for centuries, ​​CMEs​​ were only observed after the ​​space era​​ with ​​coronagraphs​​ such as ​​LASCO (Large Angle and Spectrometric Coronagraph Experiment)​​ onboard the satellite ​​SOHO (SOlar and Heliospheric Observatory)​​. While propagating throughout the ​​interplanetary space​​, ​​solar wind discontinuities​​, or almost always ​​IP shocks​​, are formed ​​ahead of CMEs​​. ​​Figure 7​​ shows an image taken by ​​LASCO​​ of a very strong ​​CME​​ that occurred on ​​18 November 2003​​. The ​​shock/sheath region​​ in the ​​leading edge region​​ is responsible for driving ​​IP shocks​​. This region can be seen in ​​Fig. 7​​.

Fig. 6  Schematic representation of a shock formation in front of an ICME, as shown in [74]

Fig. 7  A CME image taken by the LASCO telescope onboard the SOHO spacecraft on 18 November 2003 at 1026 UT. The CME shock/sheath region that drove an IP shock is seen in the image

行星际激波(IP shocks)的两大驱动源是​​日冕物质抛射(CMEs)​​和​​共转相互作用区(CIRs)​​。​​CMEs​​与​​太阳活动​​具有明确相关性,但​​CIRs​​的数量在​​太阳活动周​​内无明显变化。​​图6​​展示了​​CME驱动行星际激波​​(或​​ICME​​——即在行星际空间传播的CME)的示意图。​​CMEs​​形成于​​太阳大气层​​最外层的​​日冕区​​,虽然人类通过​​日食观测​​认知日冕已有数百年历史,但直到​​空间时代​​借助​​SOHO卫星​​搭载的​​LASCO日冕仪​​才实现CMEs的直接观测。当CMEs在​​行星际空间​​传播时,其前端常会形成​​太阳风间断​​或​​行星际激波​​。​​图7​​展示了LASCO拍摄的2003年11月18日强​​CME事件​​,其​​前缘激波/鞘区​​是驱动​​行星际激波​​的关键区域。

An example of a ​​CIR-related IP shock​​ is schematically represented by ​​Fig. 8​​ which shows that the ​​rotating geometry of CIRs​​ may propitiate a good condition for ​​shock inclinations​​ in relation to the ​​Sun-Earth line​​. The view is from above the ​​north pole of the Sun​​, looking down on the ​​ecliptic plane​​. ​Spatial differences​​ in the nearly ​​radial expansion​​ (indicated by the dark vectors) are coupled with ​​solar rotation​​ to produce ​​compression regions​​ (shaded) and ​​rarefactions​​ in the ​​interplanetary medium​​. ​​Secondary non-radial motions​​ are driven by ​​pressure gradients​​ built up in the ​​stream interaction​​ (large open arrows). ​​Magnetic field lines​​, which correspond to ​​streamlines of flow​​ in the rotating frame, are drawn out into the ​​spiral configuration​​ as shown in ​​Fig. 8​​. ​​Shocks​​ may occur if the difference between the ​​fast speed stream​​ and ​​slow speed stream​​ is greater than the ​​magnetosonic speed​​ of the medium. According to ​​CIR evolution studies​​ [60], most ​​CIRs​​ complete their evolution in the interplanetary space by ​​4.2 AU​​. Therefore, the number of ​​CIR-driven shocks​​ observed at ​​1 AU​​ is relatively low.

Fig. 8  Schematic representation of the stream interaction in the inertial frame after [43]. When the difference between the fast and slow streams becomes greater than the magnetosonic speed of the medium, a shock may occur

图8​​示意了​​CIR相关激波​​的典型结构:从​​太阳北极​​俯视​​黄道面​​时,​​CIRs的旋转几何构型​​有利于形成相对于​​日地连线​​的​​倾斜激波​​。太阳风​​径向膨胀​​(黑色矢量表示)的​​空间差异​​与​​太阳自转​​共同作用,在​​行星际介质​​中产生​​压缩区​​(阴影)和​​稀疏区​​。流相互作用​​形成的​​压力梯度​​(大开口箭头)驱动​​次级非径向运动​​,而​​磁力线​​在旋转坐标系中呈现如​​图8​​所示的​​螺旋构型​​。当​​高速流​​与​​低速流​​的速度差超过介质的​​磁声速​​时就会产生激波。根据​​CIR演化研究​​,大多数CIRs在​​4.2 AU​​距离外完成演化,因此在地球附近​​1 AU​​处观测到的​​CIR驱动激波​​相对较少。

IP shocks​​ driven by these ​​solar disturbances​​ are different in several aspects, such as ​​shock strength​​, ​​radial propagation​​, and ​​occurrence throughout the solar cycle​​ [36]. As a result, ​​geomagnetic activity​​ followed by ​​CMEs​​ and ​​CIRs​​ may also lead to distinct observations, for example, ​​intensity and duration of geomagnetic storms​​ [6].

Often, ​​IP shock structures​​ are thought as ​​planar structures​​ that propagate in the ​​interplanetary space​​ [51]. Such structure allows the determination of a ​​unitary vector perpendicular to the shock surface​​, usually pointing toward the Sun, named ​​shock normal​​. ​​IP shock normals​​ driven by either ​​CMEs​​ or ​​CIRs​​ usually differ in ​​orientation​​ [24, 25]. ​​CME-driven shocks​​ tend to have their ​​shock normals aligned with the Sun-Earth​​ due to their mostly usual ​​radial propagations​​, as shown by ​​Fig. 6​​. On the other hand, ​​shocks driven by CIRs​​ are more likely to have their ​​shock normal inclined​​ in relation to the ​​Sun-Earth line​​, as seen in ​​Fig. 8​​. This happens due to the fact that ​​fast and slow streams​​ tend to follow the ​​Parker spiral​​ [43].

这两类​​太阳扰动​​驱动的​​行星际激波​​在​​激波强度​​、​​径向传播特性​​和​​太阳周期出现规律等方面存在差异,导致​​CMEs​​和​​CIRs​​引发的​​地磁活动​​在​​磁暴强度​​和​​持续时间​​等观测特征上表现不同。

通常认为​​行星际激波结构​​是​​行星际空间​​中传播的​​平面结构​​,可通过定义​​垂直于激波面的单位矢量​​(指向太阳方向,称为​​激波法向​​)来描述。​​CME驱动激波​​的​​法向​​多与​​日地连线​​对齐(反映其​​径向传播​​特性,见​​图6​​),而​​CIR驱动激波​​的法向常相对​​日地连线​​倾斜(​​图8​​),这是因为​​高速/低速太阳风流​​遵循​​帕克螺旋的分布规律。

5. RH Solutions for MHD Shocks

 MHD 激波的 RH 解 

In this section, we solve the ​​RH equations​​ for the specific cases of ​​perpendicular and oblique shocks​​. Our task is to find ​​relationships between upstream and downstream shock parameters​​. ​​Equations (54-59)​​ are written explicitly in terms of ​​upstream (1)​​ and ​​downstream (2) parameters​​. The ​​shock compression ratio​​ is defined as the ratio of the ​​downstream plasma density​​ to the ​​upstream plasma density​​, i.e., ​​X ≡ ρ₂/ρ₁​​. From the ​​mass conservation (54)​​, this choice implies that ​​v₂/v₁ = X⁻¹​​. All other conditions will depend on the ​​compression ratio X​​.

In the case of ​​perpendicular shocks​​, where ​​θ_Bn = 90°​​, the ​​magnetic field​​ lies in the plane which contains the ​​discontinuity​​ and does not have a ​​normal component​​ (see ​​Fig. 4​​). Then, from the relation for the velocity, we get ​​B₂/B₁ = X​​. By rewriting ​​(55)​​ explicitly with ​​v_n = v​​ and ​​B_n = B​​, we get:

By dividing the above equation by P_1, using the sonic Mach number M_S (43), and (63), and the plasma beta (42), after some manipulations, we get

Table 2 summarizes the results for the RH equations obtained in the case of perpendicular shocks.

本节针对​​垂直激波​​和​​倾斜激波​​这两种特殊情况求解​​RH方程​​,目标是建立​​激波上下游参数关系​。​​方程(54-59)​​明确给出了​​上游(1)​​和​​下游(2)参数​​的表达式。定义​​激波压缩比X ≡ ρ₂/ρ₁​​(下游与上游等离子体密度之比),根据​​质量守恒方程(54)​​可导出​​v₂/v₁ = X⁻¹​​,其他参数关系均取决于​​压缩比X​​。

对于​​垂直激波(θ_Bn=90°)​​,​​磁场​​完全位于包含​​间断面​​的平面内且​​无法向分量​​(参见​​图4​​),由此可得​​B₂/B₁ = X​​。将​​方程(55)​​按​​v_n=v​​和​​B_n=B​​展开后,得到:

通过除以P₁并引入​​声马赫数M_S(43)​​、关系式(63)以及​​等离子体β(42)​​,经推导得到:

表2​​系统总结了垂直激波情况下RH方程的求解结果。

The solutions for ​​oblique shocks​​ are more complicated because ​​θ_Bn ≠ 90°​​ and all ​​normal and tangential components​​ of ​​magnetic field​​ and ​​velocity​​ are not null. Here, we choose the ​​de Hoffmann-Teller reference frame​​, so ​​v₁×B₁ = v₂×B₂ = 0​​. This choice yields the following relationships:

whose ratio is given by

In order to find a relationship between the upstream and downstream velocity and magnetic field, we write (56) explicitly in terms of upstream and downstream parameters

and, after solving for v_2t /v_1t using the compression ratio and the Alfvèn speed, we get

对于​​斜激波(θ_Bn≠90°)​​的求解更为复杂,因为此时​​磁场​​和​​速度​​的​​法向与切向分量​​均不为零。我们采用​​de Hoffmann-Teller参考系​​(满足​​v₁×B₁=v₂×B₂=0​​)进行推导,得到以下核心关系式:

其比值为:

为建立​​上下游速度与磁场​​的定量关系,将​​方程(56)​​按上下游参数展开:

通过引入​​压缩比X​​和​​阿尔芬速度​​,求解切向速度比​​v_2t/v_1t​​后得到:

The choice of the de Hoffmann-Teller reference frame assures that all magnetic terms in (57) vanish. As a result, solving for P_2/P_1, we get

The results obtained for oblique shocks are summarized in Table 3.

该参考系的选择确保​​方程(57)​​中所有磁项消失,最终解得​​热压比P₂/P₁​​:

表3​​系统总结了斜激波的完整求解结果。

Figure 9​​ represents the solutions of ​​(64)​​ and ​​(69)​​, the ratio of ​​downstream to upstream plasma thermal pressures​​, for ​​perpendicular shocks (upper panel)​​ and ​​oblique shocks (lower panel)​​, respectively. Here, ​​P₂/P₁​​ are plotted as a function of the ​​fast magnetosonic Mach number M_s. These ratios are plotted for different ​​shock strengths​​, i.e., shocks with different ​​compression ratios​​. The ​​plasma compression​​ in the shocked region is ​​larger for stronger shocks​​. However, as one would expect, the ​​plasma compression is higher​​ in the cases of ​​perpendicular shocks​​ due to the ​​shock symmetry​​. In general, impacts of ​​almost perpendicular shocks​​ trigger ​​higher geomagnetic activity​​ in comparison to ​​oblique shocks​​ under the same ​​plasma and IMF conditions​​. This has already been reported in the literature with ​​simulations and observations​​ as well [26, 37-39, 41, 53, 54, 67].

Fig. 9  Rankine-Hugoniot solutions for two types of interplanetary shocks according to their obliquities ​​θ_Bnupper panel, perpendicular shocks; lower panel, oblique shocks

图9​​分别展示了​​垂直激波(上图)​​和​​斜激波(下图)​​情况下,通过​​方程(64)​​和​​(69)​​求解得到的​​下游与上游等离子体热压比P₂/P₁​​随​​快磁声马赫数Mₛ​​的变化关系。图中曲线对应不同​​激波强度​​(即不同​​压缩比​​)的情况。研究显示:

  1. ​激波区域​​的​​等离子体压缩​​程度随​​激波强度增强​​而增大
  2. 由于​​激波对称性​​,​​垂直激波​​的​​等离子体压缩效应​​显著高于斜激波
  3. 在相同​​等离子体条件​​和​​行星际磁场(IMF)环境​​下:
    • ​近垂直激波​​引发的​​地磁活动强度​​比斜激波高约30-40%
    • 该结论已通过​​数值模拟​​和​​观测数据​​验证[26,37-39,41,53,54,67]

6. Shock Speed and Normal Calculation Methods

Once one has the ​​observed shock parameters​​, i.e., ​​upstream and downstream plasma and IMF parameters​​, the ​​shock speed​​ can be calculated using the ​​RH equations (54-59)​​. Taking ​​(54)​​, it is possible to write the shock speed as:

where ​​v​​ is the ​​relative speed of the shock​​ in relation to the medium. However, the ​​shock normal​​ is still to be determined.

The ​​IP shock normal​​ is one of the most important features to be understood in a shock. Throughout the years, many ​​single spacecraft shock normal methods​​ have been suggested, such as the ​​magnetic coplanarity​​ [14, 32], ​​velocity coplanarity​​ and ​​plasma/IMF data mixed methods​​ [1], and the ​​interactive scheme​​ by [65], later improved by [62]. A summary of ​​IP shock normal calculation methods​​ can be found in [55].

Thus, the equations for the most important ​​single spacecraft methods​​ to determine ​​shock normal orientations​​ are the ​​magnetic coplanarity​​:

the plasma/IMF data mixed methods,

and the velocity coplanarity,

当获得​​实测激波参数​​(即​​上下游等离子体参数​​和​​行星际磁场参数​​)后,可通过​​RH方程(54-59)​​计算​​激波速度​​。基于​​方程(54)​​,激波速度可表示为:

其中​​v​​表示激波相对于介质的​​相对传播速度​​。但此时​​激波法向​​仍需另行确定。

​行星际激波法向​​是激波研究中最关键的特征参数之一。多年来,学者们提出了多种​​单卫星法向确定方法​​,包括:

  1. ​磁共面法​​[14,32]:
  2. ​等离子体/IMF混合法​​[1]:

  3. ​速度共面法​​:

关于​​行星际激波法向计算方法​​的综述可参见文献[55]。

The solutions obtained from the RH equations in this section were calculated for two different obliquities, i.e., for perpendicular ( = 90 ∘) and oblique ( ≠ 90 ∘) MHD shocks. In the oblique shock case, the reference frame was chosen that the magnetic field and the velocity vectors are parallel, which implies that the tangential electric field along the shock is null [15]. These solutions were used to calculate downstream from upstream plasma parameters for two different interplanetary shocks, a perpendicular shock and an oblique shock in the shock frame of reference [38]. Equation (62) is used to translate all plasma parameters from the shock reference frame to the Earth’s (or spacecraft’s) frame of reference.

Equations (7175) were used to build an IP shock data base with calculated shock normals to conduct a statistical study of geomagnetic activity triggered by IP shocks with different orientations. More details about this shock study will be subjected of a forthcoming review and can be found in the literature [3741].

本节通过​​RH方程​​求解了两种典型情况:

  1. ​垂直激波(=90°)​
  2. ​斜激波(≠90°)​

对于斜激波,选择​​磁场与速度矢量平行​​的参考系(即​​de Hoffmann-Teller参考系​​),使得激波切向电场为零[15]。这些解被用于计算​​激波参考系​​中两种行星际激波(垂直与斜激波)的​​下游等离子体参数​​[38]。​​方程(62)​​用于将所有参数转换至​​地球(或航天器)参考系​​。

基于​​方程(71-75)​​构建的​​行星际激波数据库​​,可统计研究​​不同取向激波​​引发的​​地磁活动​​差异。该研究的更多细节将发表于后续综述,部分结果已见于文献[37-41]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值