
Time series
文章平均质量分 93
Phoenixtree_DongZhao
深度学习 图像处理 空间物理
github:https://github.com/phoenixtreesky7
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Time-Series Explanations:时间序列可解释性 TimeX++ 和 ORTE 简介
《时间序列可解释性研究进展》 本文对比分析了TimeX++和ORTE两项最新时间序列可解释性研究。TimeX++从信息瓶颈原理出发,通过改进目标函数解决平凡解和分布偏移问题,提出生成分布内解释实例的框架,在合成和真实数据上验证了其有效性。ORTE则提出最优信息保留原则,利用条件互信息平衡冗余性和完整性,通过二元掩码和对比学习实现解释优化,在医疗金融等领域展现出优势。两项研究均从信息论角度推进了时间序列解释的理论基础,TimeX++侧重分布一致性保持,ORTE强调信息完整性权衡,分别通过不同技术路径提升了解释原创 2025-10-04 22:46:46 · 393 阅读 · 0 评论 -
ICLR 2025 Time Series 时间序列论文汇总(论文链接)
本文摘要介绍了多个时间序列分析与预测的前沿模型与方法。包括通用预测模型TimeMixer++、基于Granger因果的异常根因分析、连续状态空间Feynman-Kac模型的概率方法等口头报告,以及在线预测、最优传输插补、扩散模型概率预测等海报展示。研究涵盖时间序列分类、异常检测、概率预测、因果发现等多个方向,采用了深度学习、贝叶斯方法、最优传输、扩散模型等技术,并探索了大语言模型在时间序列分析中的应用。这些工作推动了时间序列分析在可解释性、概率建模和通用基础模型方面的发展。原创 2025-10-03 08:04:59 · 818 阅读 · 0 评论 -
ICLM 2025 Time Series 时间序列论文汇总(论文链接)
近期时间序列预测领域涌现多项创新研究,主要包括:FSTLLM提出时空大模型用于小样本预测;Sundial和TimeBase等构建高效基础模型;K²VAE、扩散模型等改进概率预测方法;隐私保护方面提出结构化子采样方案;多篇工作关注非平稳时间序列处理(TimeBridge、TimeStacker)。其他亮点包括:跨频交互模型CFPT、基于Koopman的KoNODE、检索增强预测框架、视觉-语言多模态模型(Time-VLM)以及轻量化模型LightGTS。研究趋势显示:基础模型优化、概率预测、多模态融合和计算效原创 2025-10-03 07:31:16 · 557 阅读 · 0 评论 -
[ICLR 2025] 上下文时间序列预测器
本文提出了一种基于上下文学习的时间序列预测方法ICTSP,通过将预测任务构建为输入标记,而非传统的时间步或序列标记。该方法充分利用Transformer的上下文学习能力,将历史回望窗口与未来序列作为上下文示例,实现了更高效的参数利用和更强的泛化能力。实验表明,ICTSP在全数据、少样本和零样本设置下均优于现有方法,有效解决了传统Transformer模型在时间序列预测中存在的过拟合等问题。该方法无需依赖预训练大语言模型参数,计算效率更高,并能自适应不同复杂度的数据集,展现出作为通用时间序列预测解决方案的潜力原创 2025-09-21 10:42:26 · 888 阅读 · 0 评论 -
[ICLR 2025] 基于最优传输的时间序列插补方法
本文提出了一种基于最优传输的时间序列插补方法PSW-I,通过设计近端谱瓦瑟斯坦(PSW)差异度量解决现有分布对齐方法在时序数据中的局限性。PSW结合成对谱距离捕捉时序模式,并引入选择性匹配正则化增强对非平稳性的鲁棒性。实验表明,PSW-I无需掩盖观测值或训练参数模型,即可有效处理周期性、时间依赖等时序特征,在多种缺失场景下优于现有方法。该方法为时间序列缺失值插补提供了新的分布对齐视角,具有实现简便和样本效率高的优势。原创 2025-09-20 19:36:02 · 726 阅读 · 0 评论 -
Time-MoE:基于混合专家技术的十亿级时间序列基础模型 [ICLR 2025]
摘要:本文提出Time-MoE,一种基于稀疏混合专家(MoE)的大规模时间序列基础模型,通过高效激活部分网络参数,在保持高模型容量的同时降低计算成本。Time-MoE采用仅解码器Transformer架构,支持可变输入长度与多分辨率预测,首次将时间序列模型扩展至24亿参数。基于自建的Time-300B数据集(覆盖9领域、3000亿时间点),实验表明Time-MoE在相同计算预算下显著优于密集模型,验证了时间序列预测中的Scaling Laws规律。原创 2025-09-20 06:09:27 · 824 阅读 · 0 评论