互联网日志用户行为分析

本文介绍了在互联网日志用户行为分析项目中,如何使用Hadoop MapReduce进行数据清洗和处理。首先,从Flume采集的日志数据开始,经过数据清洗阶段,解析IP获取province、city等信息,再通过MapReduce进行数据预处理。接着,通过编写MapReduce程序统计每个省份的PV和UV,最终实现了对用户访问行为的有效分析。
摘要由CSDN通过智能技术生成

项目需求

  在我们的场景中,Web应用的部署是如下的架构:在这里插入图片描述
  即比较典型的Nginx负载均衡+KeepAlive高可用集群架构,在每台Web服务器上,都会产生用户的访问日志,日志格式如下:
在这里插入图片描述
根据给定的时间范围内的日志数据,统计出每个省每日访问的PV、UV。

实现步骤

第一步:获取原生数据

  数据采集工作由运维人员来完成,对于用户访问日志的采集,使用的是Flume,并且会将采集的数据保存到HDFS中,其架构如下:
在这里插入图片描述

  可以看到,不同的Web Server上都会部署一个Agent用于该Server上日志数据的采集,之后,不同Web Server的Flume Agent采集的日志数据会下沉到另外一个被称为Flume Consolidation Agent(聚合Agent)的Flume Agent上,该Flume Agent的数据落地方式为输出到HDFS。
  在我们的HDFS中,可以查看到其采集的日志:
在这里插入图片描述

第二步:数据清洗

1、数据清洗目的

  刚刚采集到HDFS中的原生数据,我们也称为不规整数据,即目前来说,该数据的格式还无法满足我们对数据处理的基本要求,需要对其进行预处理,转化为我们后面工作所需要的较为规整的数据,所以这里的数据清洗,其实指的就是对数据进行基本的预处理,以方便我们后面的统计分析,所以这一步并不是必须的,需要根据不同的业务需求来进行取舍,只是在我们的场景中需要对数据进行一定的处理。

2、数据清洗方案

  原来的日志数据格式是如下的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值