Code

# poj 3308 Paratroopers(网络流 最小割 dinic模板)

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值

struct Node
{
int from,to,next;
double cap;
} edge[MAXM];
int tol;

int dep[MAXN];//dep为点的层次

int n;
void init()
{
tol=0;
}
{
edge[tol].from=u;
edge[tol].to=v;
edge[tol].cap=w;
edge[tol].from=v;
edge[tol].to=u;
edge[tol].cap=0;
}

int BFS(int start,int end)
{
int que[MAXN];
int front,rear;
front=rear=0;
memset(dep,-1,sizeof(dep));
que[rear++]=start;
dep[start]=0;
while(front!=rear)
{
int u=que[front++];
if(front==MAXN)front=0;
{
int v=edge[i].to;
if(edge[i].cap>0&&dep[v]==-1)
{
dep[v]=dep[u]+1;
que[rear++]=v;
if(rear>=MAXN)rear=0;
if(v==end)return 1;
}
}
}
return 0;
}
double dinic(int start,int end)
{
double res=0;
int top;
int stack[MAXN];//stack为栈，存储当前增广路
int cur[MAXN];//存储当前点的后继
while(BFS(start,end))
{
int u=start;
top=0;
while(1)
{
if(u==end)
{
double min=INF;
int loc;
for(int i=0; i<top; i++)
if(min>edge[stack[i]].cap)
{
min=edge[stack[i]].cap;
loc=i;
}
for(int i=0; i<top; i++)
{
edge[stack[i]].cap-=min;
edge[stack[i]^1].cap+=min;
}
res+=min;
top=loc;
u=edge[stack[top]].from;
}
for(int i=cur[u]; i!=-1; cur[u]=i=edge[i].next)
if(edge[i].cap!=0&&dep[u]+1==dep[edge[i].to])
break;
if(cur[u]!=-1)
{
stack[top++]=cur[u];
u=edge[cur[u]].to;
}
else
{
if(top==0)break;
dep[u]=-1;
u=edge[stack[--top]].from;
}
}
}
return res;
}

int main()//多源多汇点，在前面加个源点，后面加个汇点，转成单源单汇点
{
int start,end,t;
int row,col,par;
double val;
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&row,&col,&par);
n=row+col+1;
init();
for(i = 1; i <= row; i ++)
{
scanf("%lf", &val);
}
for(i = 1; i <= col; i ++)
{
scanf("%lf", &val);
}
while(par --)
{
scanf("%d%d", &i, &j);
}

double ans=dinic(0,n);
printf("%.4f\n",exp(ans));
}
return 0;
}


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<cmath>
using namespace std;
const int nMax = 105;
const int eMax = 1450;
const double inf = 999999;

struct{
int u, v, next;
double c;
}bf[2*eMax];
int cur[nMax], ps[nMax], dep[nMax];

void addEdge(int u, int v, double c){    // dinic的加边，还是有点不同的。
bf[ne].u = u;
bf[ne].v = v;
bf[ne].c = c;
bf[ne].u = v;
bf[ne].v = u;
bf[ne].c = 0;
}

double dinic(int s, int t){     // dinic模板：源点为s，汇点为t(这里可以不用知道n的大小)。
double tr, res = 0;
int i, j, k, f, r, top;
while(1){
memset(dep, -1, sizeof(dep));
for(f = dep[ps[0]=s] = 0, r = 1; f != r;)
for(i = ps[f ++], j = head[i]; j; j = bf[j].next)
if(bf[j].c && dep[k=bf[j].v] == -1){
dep[k] = dep[i] + 1;
ps[r ++] = k;
if(k == t){
f = r; break;
}
}
if(dep[t] == -1) break;
i = s, top = 0;
while(1){
if(i == t){
for(tr = inf, k = 0; k < top; k ++)
if(bf[ps[k]].c < tr)
tr = bf[ps[f=k]].c;
for(k = 0; k < top; k ++){
bf[ps[k]].c -= tr;
bf[ps[k]^1].c += tr;
}
i = bf[ps[top=f]].u;
res += tr;          // 当前的最大流，每次累积上去。
}
for(j = cur[i]; cur[i]; j = cur[i] = bf[cur[i]].next)
if(bf[j].c && dep[i]+1 == dep[bf[j].v]) break;
if(cur[i]){
ps[top ++] = cur[i];
i = bf[cur[i]].v;   // i=bf[cur[i]].v 绝不能写为 bf[cur[i]].v=i，脑残了一次。
}else{
if(top == 0) break;
dep[i] = -1;
i = bf[ps[-- top]].u;
}
}
}
return res;
}

int main(){
int t, row, col, par, n, i, j;
double val;
scanf("%d", &t);
while(t --){
ne = 2;
scanf("%d%d%d", &row, &col, &par);
n = row + col + 1;
for(i = 1; i <= row; i ++){
scanf("%lf", &val);
}
for(i = 1; i <= col; i ++){
scanf("%lf", &val);
}
while(par --){
scanf("%d%d", &i, &j);
}
double ans = dinic(0, n);
printf("%.4f\n", exp(ans));
}
return 0;
}

#### [网络流] 网络流(23/24)题题解集合

2017-04-15 02:09:24

#### POJ 3308 Paratroopers（最小割+Dinic）

2016-07-18 21:09:01

#### poj3308——Paratroopers（最小割）

2017-05-02 20:03:14

#### Hdu 6201 transaction transaction transaction（最长路）

2017-09-29 16:37:39

#### POJ3308-Paratroopers

2011-09-17 14:00:44

#### Dinic 算法求最大流（最小割） POJ 2536

2015-10-29 18:56:07

#### BZOJ1001(最小割，Dinic的优化)

2015-12-08 17:23:41

#### 网络流Dinic算法详解及模板

2013-08-25 08:50:07

#### 网络流-Dinic算法详解与模板

2016-07-26 19:57:38

#### POJ3308 Paratroopers（最大流）

2011-09-13 21:54:38