堆的概念
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树 。
将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆。
(ki <= k2i,ki <= k2i+1)或者(ki >= k2i,ki >= k2i+1), (i = 1,2,3,4...n/2)
若将和此次序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。
堆的二叉树和数组表示如下,注意数组下标从1开始,这样对于下标为k的元素a[k],如果其存在父节点,其父节点就可表示为a[k/2],k/2取整数。
堆的操作
三个问题:
堆的插入
堆的调整
建堆
堆的插入
将一个新元素插入建好的堆中
建堆
不必将值一个个地插入堆中,通过交换形成堆。假设根的左、右子树都已是堆,并且根的元素名为R。这种情况下,有两种可能:
(1) R的值小于或等于其两个子女,此时堆已完成;
(2) R的值大于其某一个或全部两个子女的值,此时R应与两个子女中值较小的一个交换,结果得到一个堆,除非R仍然大于其新子女的一个或全部的两个。这种情况下,我们只需简单地继续这种将R“拉下来”的过程,直至到达某一个层使它小于它的子女,或者它成了叶结点。
下图展示了建堆过程
建堆是不断调整堆的过程,从len/2处开始调整,一直到第一个节点,此处len是堆中元素的个数。建堆的过程是线性的过程,从len/2到0处一直调用调整堆的过程。上图依次以87、72、83为父节点调整。87只有一个儿子9,9比87小,不用调整;然后72有两个儿子30、49,都比72小,不用调整;然后83有两个儿子,91最大且大于83,这样就要把83提下来,91升上去。
然后是节点43,43比87小,43提下去,87升上来,43比9大,不用调整;然后是66,两个儿子91和72都比66大,和较大的91交换位置,66下去,91上来,然后66又比83小,66下去,83上来;然后是节点79,79的两个儿子91和87都比它大,91上去,79下来,然后79有两个儿子,83和72,83大于79,83上去,79下来,然后79的两个儿子55和66都比79小,结束。
调整
每次从堆顶取走最大值或最小值后要使剩余的元素成堆,如何调整呢?可以将最后一个元素推到堆顶,然后自堆顶向下调整,和建堆时的调整类似,就不多说了。
堆的实现
// heap.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include<vector>
#include<algorithm>
#include<iostream>
using namespace std;
#define LARGENUM 1000000
class Heap
{
private:
vector<int> array;
int find(int tofind)
{
vector<int>::iterator it;
it = std::find(array.begin(), array.end(), tofind);
return it == array.end() ? -1 : it - array.begin();
}
public:
Heap()//构造
{
array.push_back(LARGENUM);//哨兵
}
void insert(const int val)//插入
{
_ASSERTE(val < LARGENUM);
array.push_back(val);
int index = array.size() - 1;
while (array[index] > array[index / 2])
{
array[index] = array[index/ 2];
array[index / 2] = val;
index = index / 2;
}
}
bool erase(int val)//删除
{
int index = find(val);
if (index < 0)
return false;
array[index] = array.back();
array.pop_back();
while (index * 2 < array.size())
{
int t = array[index];
if (2 * index + 1 < array.size())
{
if (array[index] > array[2 * index] && array[index] > array[2 * index + 1])
return true;
int nn = array[2 * index + 1] > array[2 * index] ? 2 * index + 1 : 2 * index;
array[index] = array[nn];
array[nn] = t;
index = nn;
}
else
{
if (array[index] > array[2 * index])
return true;
int t = array[index];
array[index] = array[2 * index];
array[2 * index] = t;
return true;
}
}
}
int top()//返回堆顶
{
_ASSERTE(array.size() != 1);
return array[1];
}
void pop()//弹出堆顶
{
_ASSERTE(array.size() != 1);
array[1] = array.back();
array.pop_back();
int index = 1;
while (index * 2 < array.size())
{
int t = array[index];
if (2 * index + 1 < array.size())
{
if (array[index] > array[2 * index] && array[index] > array[2 * index + 1])
return;
int nn = array[2 * index + 1] > array[2 * index] ? 2 * index + 1 : 2 * index;
array[index] = array[nn];
array[nn] = t;
index = nn;
}
else
{
if (array[index] > array[2 * index])
return;
int t = array[index];
array[index] = array[2 * index];
array[2 * index] = t;
return;
}
}
}
bool empty()
{
return array.size() == 1;
}
int size()//返回堆的大小
{
return array.size() - 1;
}
};
int _tmain(int argc, _TCHAR* argv[])
{
Heap h;
h.insert(10);
h.insert(35);
h.insert(19);
h.insert(5);
h.insert(2);
h.insert(51);
h.insert(37);
h.insert(7);
h.insert(45);
h.insert(63);
cout << h.size() << endl;
cout << h.top()<< endl;
h.pop();
cout << h.size() << endl;
cout << h.top() << endl;
h.erase(45);
system("pause");
return 0;
}
stl没有直接的堆数据结构,不过可以用algorithm头文件里的算法以vector为底层数据结构构建堆
#include "stdafx.h"
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
bool cmp(int a, int b) //比较函数
{
return a > b;
}
int main()
{
int myints[] = { 10, 20, 30, 5, 15 };
vector<int> v(myints, myints + 5);
vector<int>::iterator it;
make_heap(v.begin(), v.end(),cmp);//male_heap就是构造一棵树,使得每个父结点均大于等于其子女结点
cout << "initial max heap : " << v.front() << endl;
/* */
pop_heap(v.begin(), v.end(),cmp);//pop_heap不是删除某个元素而是把第一个和最后一个元素对调后[first,end-1]进行构树,最后一个不进行构树
v.pop_back();//删除最后一个的结点
cout << "max heap after pop : " << v.front() << endl;
v.push_back(99);//在最后增加一个结点
push_heap(v.begin(), v.end(),cmp);//重新构树
cout << "max heap after push: " << v.front() << endl;
sort_heap(v.begin(), v.end(),cmp);//把树的结点的权值进行排序
/*for(int j=0;j<v.size();j++)
cout<<v[j]<<' ';
cout<<endl;*/
cout << "final sorted range :";
for (unsigned i = 0; i<v.size(); i++)
cout << " " << v[i];
cout << endl;
return 0;
}
cmp为比较函数,可选。