数据结构堆的实现

堆的概念

堆(英语:heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树
将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆。
(ki <= k2i,ki <= k2i+1)或者(ki >= k2i,ki >= k2i+1), (i = 1,2,3,4...n/2)
若将和此次序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。

堆的二叉树和数组表示如下,注意数组下标从1开始,这样对于下标为k的元素a[k],如果其存在父节点,其父节点就可表示为a[k/2],k/2取整数。




堆的操作

三个问题:

堆的插入

堆的调整

建堆


堆的插入

将一个新元素插入建好的堆中


建堆



不必将值一个个地插入堆中,通过交换形成堆。假设根的左、右子树都已是堆,并且根的元素名为R。这种情况下,有两种可能:
(1) R的值小于或等于其两个子女,此时堆已完成;
(2) R的值大于其某一个或全部两个子女的值,此时R应与两个子女中值较小的一个交换,结果得到一个堆,除非R仍然大于其新子女的一个或全部的两个。这种情况下,我们只需简单地继续这种将R“拉下来”的过程,直至到达某一个层使它小于它的子女,或者它成了叶结点。

下图展示了建堆过程



建堆是不断调整堆的过程,从len/2处开始调整,一直到第一个节点,此处len是堆中元素的个数。建堆的过程是线性的过程,从len/2到0处一直调用调整堆的过程。上图依次以87、72、83为父节点调整。87只有一个儿子9,9比87小,不用调整;然后72有两个儿子30、49,都比72小,不用调整;然后83有两个儿子,91最大且大于83,这样就要把83提下来,91升上去。


然后是节点43,43比87小,43提下去,87升上来,43比9大,不用调整;然后是66,两个儿子91和72都比66大,和较大的91交换位置,66下去,91上来,然后66又比83小,66下去,83上来;然后是节点79,79的两个儿子91和87都比它大,91上去,79下来,然后79有两个儿子,83和72,83大于79,83上去,79下来,然后79的两个儿子55和66都比79小,结束。


调整

每次从堆顶取走最大值或最小值后要使剩余的元素成堆,如何调整呢?可以将最后一个元素推到堆顶,然后自堆顶向下调整,和建堆时的调整类似,就不多说了。


堆的实现

// heap.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include<vector>
#include<algorithm>
#include<iostream>
using namespace std;

#define LARGENUM 1000000


class Heap
{
private:
	vector<int> array;

	int find(int tofind)
	{
		vector<int>::iterator it;
		it = std::find(array.begin(), array.end(), tofind);
		return it == array.end() ? -1 : it - array.begin();
	}
public:
	Heap()//构造
	{
		array.push_back(LARGENUM);//哨兵
	}

	void insert(const int val)//插入
	{
		_ASSERTE(val < LARGENUM);
		array.push_back(val);
		int index = array.size() - 1;
		while (array[index] > array[index / 2])
		{
			array[index] = array[index/ 2];
			array[index / 2] = val;
			index = index / 2;
		}
	}

	bool erase(int val)//删除
	{
		int index = find(val);
		if (index < 0)
			return false;
		array[index] = array.back();
		array.pop_back();
		while (index * 2 < array.size())
		{
			int t = array[index];
			if (2 * index + 1 < array.size())
			{
				if (array[index] > array[2 * index] && array[index] > array[2 * index + 1])
					return true;
				int nn = array[2 * index + 1] > array[2 * index] ? 2 * index + 1 : 2 * index;
				array[index] = array[nn];
				array[nn] = t;
				index = nn;
			}
			else
			{
				if (array[index] > array[2 * index])
					return true;
				int t = array[index];
				array[index] = array[2 * index];
				array[2 * index] = t;
				return true;
			}

		}
		
	}

	int top()//返回堆顶
	{
		_ASSERTE(array.size() != 1);
		return  array[1];
	}

	void pop()//弹出堆顶
	{
		_ASSERTE(array.size() != 1);
		array[1] = array.back();
		array.pop_back();
		int index = 1;
		
		while (index * 2 < array.size())
		{
			int t = array[index];
			if (2 * index + 1 < array.size())
			{
				if (array[index] > array[2 * index] && array[index] > array[2 * index + 1])
					return;

				int nn = array[2 * index + 1] > array[2 * index] ? 2 * index + 1 : 2 * index;
				array[index] = array[nn];
				array[nn] = t;
				index = nn;
			}
			else
			{
				if (array[index] > array[2 * index])
					return;
				int t = array[index];
				array[index] = array[2 * index];
				array[2 * index] = t;
				return;
			}

		}
	}

	
	bool empty()
	{
		return array.size() == 1;
	}

	int size()//返回堆的大小
	{
		return array.size() - 1;
	}

};

int _tmain(int argc, _TCHAR* argv[])
{
	
	Heap h;
	h.insert(10);
	h.insert(35);
	h.insert(19);
	h.insert(5); 
	h.insert(2); 
	h.insert(51);
	h.insert(37);
	h.insert(7);
	h.insert(45);
	h.insert(63);
	cout << h.size() << endl;
	cout << h.top()<< endl;
	h.pop();
	cout << h.size() << endl;
	cout << h.top() << endl;
	h.erase(45);

	system("pause");
	return 0;
}


stl没有直接的堆数据结构,不过可以用algorithm头文件里的算法以vector为底层数据结构构建堆

#include "stdafx.h"
#include <iostream>  
#include <algorithm>  
#include <vector>  
using namespace std;
bool cmp(int a, int b) //比较函数
{
	return a > b;
}
int main()
{
	int myints[] = { 10, 20, 30, 5, 15 };
	vector<int> v(myints, myints + 5);
	vector<int>::iterator it;
	make_heap(v.begin(), v.end(),cmp);//male_heap就是构造一棵树,使得每个父结点均大于等于其子女结点  
	cout << "initial max heap   : " << v.front() << endl;
	/* */
	pop_heap(v.begin(), v.end(),cmp);//pop_heap不是删除某个元素而是把第一个和最后一个元素对调后[first,end-1]进行构树,最后一个不进行构树  
	v.pop_back();//删除最后一个的结点  
	cout << "max heap after pop : " << v.front() << endl;
	v.push_back(99);//在最后增加一个结点  
	push_heap(v.begin(), v.end(),cmp);//重新构树  
	cout << "max heap after push: " << v.front() << endl;
	sort_heap(v.begin(), v.end(),cmp);//把树的结点的权值进行排序  
	/*for(int j=0;j<v.size();j++)
	cout<<v[j]<<' ';
	cout<<endl;*/
	cout << "final sorted range :";
	for (unsigned i = 0; i<v.size(); i++)
		cout << " " << v[i];
	cout << endl;
	return 0;
}

cmp为比较函数,可选。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值