问题描述:
给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
输入格式:
输入第1行给出正整数 K (<= 100000);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:6 -2 11 -4 13 -5 -2输出样例:
20
#include<iostream>
using namespace std;
int main()
{
int K, i;
cin >> K;
int * Pseq = new int[K];
for(i=0; i < K; i++)
{
cin >> *(Pseq+i);
}
int Sum=0, MaxSum=0;
for ( i=0; i< K; i++)
{
Sum += *(Pseq+i);
if( MaxSum < Sum)//大于当前最大子列和即更新
MaxSum = Sum;
else if ( Sum < 0)//当前子列和小于零就舍去
Sum = 0;
}
cout << MaxSum << endl;
return 0;
}