train_test_split的用法
注意:旧版本的导入该模块是:from sklearn.cross_validation import train_test_split
新版本改成了:from sklearn.model_selection import train_test_split
作用:
train_test_split函数用于将矩阵随机划分为训练子集和测试子集,并返回划分好的训练集测试集样本和训练集测试集标签。
格式:
X_train, X_test, y_train, y_test = train_test_split(train_data,train_target,test_size=0.3, random_state=0)
参数解释:
train_data:被划分的样本特征集, Pandas读取的DataFrame格式
train_target:被划分的样本标签, Pandas读取的DataFrame格式
test_size:如果是浮点数,在0-1之间,表示测试样本占比;如果是整数的话就是样本的数量
random_state:是随机数的种子。
随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。
随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:
种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。