算法题:矩阵的最长递增路径

本文介绍了如何解决寻找整数矩阵中最长递增路径的问题。通过使用深度优先搜索(DFS)和动态规划(DP)相结合的方法,避免了重复计算,通过一个 visited 数组记录已计算的路径。在 DFS 中,当节点未被计算时,其路径长度最小为1。文章提供了详细思路和具体实现,并附有参考链接。
摘要由CSDN通过智能技术生成

题目

给定一个整数矩阵,找出最长递增路径的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。

示例 1:
输入: nums = 
[
   [9,9,4],
   [6,6,8],
   [2,1,1]
] 
输出: 4  
解释: 最长递增路径为 
[1, 2, 6, 9]

示例 2:
输入: nums = 
[
   [3,4,5],
   [3,2,6],
   [2,2,1]
] 
输出: 4 
解释: 最长递增路径是 
[3, 4, 5, 6]

注意不允许在对角线方向上移动。

思路

问题很直观的可以想到使用 dfs 对每个点的递增路径进行计算。
但是通过对问题的分析,可以发现,在矩阵中不同点作为起点的时候,后续的点总会再计算一遍由此点开始的最长递增路径。
所以就可以想到 dp 即动态规划的核心—解决重复计算的思想。
结合动态规划解决问题的核心思想----保存已经计算结束的点,在dfs中可以用判断遍历的数组,即 visited 保存计算的路径。

具体实现

#include<iostream>
#include<vector>

using namespace std;

// 动态规划:
// 思路: 我们要计算从矩阵中所有节点开始的最长递增路径
// 首先采用dfs的思路去不断的遍历,但是利用动态规划的核心---不重复计算,使用dfs重复计算主要在起始点不同时就会
// 重复计算一些点的递增路径,所以引入动态规划的核心处理---记录已经处理过的点,也就是在dfs的记录遍历的数组中存储从
// 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值