题目
给定一个整数矩阵,找出最长递增路径的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。
示例 1:
输入: nums =
[
[9,9,4],
[6,6,8],
[2,1,1]
]
输出: 4
解释: 最长递增路径为
[1, 2, 6, 9]
示例 2:
输入: nums =
[
[3,4,5],
[3,2,6],
[2,2,1]
]
输出: 4
解释: 最长递增路径是
[3, 4, 5, 6]
注意不允许在对角线方向上移动。
思路
问题很直观的可以想到使用 dfs 对每个点的递增路径进行计算。
但是通过对问题的分析,可以发现,在矩阵中不同点作为起点的时候,后续的点总会再计算一遍由此点开始的最长递增路径。
所以就可以想到 dp 即动态规划的核心—解决重复计算的思想。
结合动态规划解决问题的核心思想----保存已经计算结束的点,在dfs中可以用判断遍历的数组,即 visited 保存计算的路径。
具体实现
#include<iostream>
#include<vector>
using namespace std;
// 动态规划:
// 思路: 我们要计算从矩阵中所有节点开始的最长递增路径
// 首先采用dfs的思路去不断的遍历,但是利用动态规划的核心---不重复计算,使用dfs重复计算主要在起始点不同时就会
// 重复计算一些点的递增路径,所以引入动态规划的核心处理---记录已经处理过的点,也就是在dfs的记录遍历的数组中存储从
//