模型地址: 参考https://github.com/FrankWork/conv_relation
模型运行环境: tensorflow 1.4.0;python 3.5;CentOs
数据集: SemEval2010 Task8,考虑方向共19种关系。详见官方文档;可参考博文
运行步骤:
- 训练模型:
./run
- 测试模型:
python src/train.py --num_epochs=200 --word_dim=50 --test
- 计算F1:
perl src/scorer.pl data/test_keys.txt data/results.txt
问题及解决方式: 像git中提到的一样出现了ArgumentError,解决:在tf.flags.FLAGS中添加定义即可解决。
结果:
后续待解决的问题及总结: 本次实现的过程是先跑通了别人的代码,仔细研究熟悉之后再自己重新理解敲了一遍,关于参数设置及优化还有一些需要改进的地方。本论文提到的模型使用了多个卷积核,但都是同一个window-size,而且加入了人为构造的Lexical Feature。可以改成使用多种不同size的卷积核提取特征,并取消人为构造的特征。