【模型调试】Relation Classification via Convolutional Deep Neural Network

模型地址: 参考https://github.com/FrankWork/conv_relation
模型运行环境: tensorflow 1.4.0;python 3.5;CentOs
数据集: SemEval2010 Task8,考虑方向共19种关系。详见官方文档;可参考博文
运行步骤:

  1. 训练模型:./run
  2. 测试模型:python src/train.py --num_epochs=200 --word_dim=50 --test
  3. 计算F1:perl src/scorer.pl data/test_keys.txt data/results.txt

问题及解决方式: 像git中提到的一样出现了ArgumentError,解决:在tf.flags.FLAGS中添加定义即可解决。
结果:
在这里插入图片描述
后续待解决的问题及总结: 本次实现的过程是先跑通了别人的代码,仔细研究熟悉之后再自己重新理解敲了一遍,关于参数设置及优化还有一些需要改进的地方。本论文提到的模型使用了多个卷积核,但都是同一个window-size,而且加入了人为构造的Lexical Feature。可以改成使用多种不同size的卷积核提取特征,并取消人为构造的特征。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值