Matching the Blanks: Distributional Similarity for Relation Learning 论文阅读笔记
一、核心思想基于Harris等人的分布式假说,作者认为,如果两个关系表示包含相同的实体对,那么两个关系表示应该是相似的。运用大量的无监督数据,在BERT的预训练过程中(Masked LM任务)额外添加MTB(Matching The Blanks)任务,在预训练阶段提升了关系抽取的性能。二、问题描述本文定义一个关系表述(relation statement)为 r =(x,s1,s2)。其中 x = [x0…xn],为一个句子中的token序列。x0为[CLS],xn为[SEP],分别表示开始标志和






