[随机增量法 最小圆覆盖] BZOJ 1366 [Balkan2002]Alien最小圆覆盖 & 1337 最小圆覆盖 & 2823 [AHOI2012]信号塔

987人阅读 评论(2) 收藏 举报
分类:


论文:顾研《浅谈随机化思想在几何问题中的应用》

以下摘录复杂度分析




期望O(n2)的张角法

实现的常数爆炸 不开O2就作死


#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;

const int N=2005;
const double eps=1e-7;
const double PI=acos(-1.0);

inline int dcmp(double a,double b){
  if (fabs(a-b)<eps) return 0;
  if (a>b) return 1; return -1;
}

inline double sqr(double x){ return x*x; }

struct Point{
  double x,y;
  Point(double x=0,double y=0):x(x),y(y) { }
  void read(){ scanf("%lf%lf",&x,&y); }
  double len(){ return sqrt(x*x+y*y); }
  friend Point operator - (Point A,Point B){ return Point(A.x-B.x,A.y-B.y); }
  friend double operator * (Point A,Point B){ return A.x*B.x+A.y*B.y; }
  friend double Cos(Point A,Point B){
    if (A.len()<eps || B.len()<eps) return -1.0; 
    return A*B/A.len()/B.len();
  }
  friend double Dis(Point A,Point B){ return (A-B).len(); }
  friend double Cross(Point A,Point B){ return A.x*B.y-A.y*B.x; }
}P[N];

inline Point Get(Point a,Point b,Point c){
  double a1,a2,b1,b2,c1,c2;
  Point ans;
  a1=2*(b.x-a.x),b1=2*(b.y-a.y),c1=sqr(b.x)-sqr(a.x)+sqr(b.y)-sqr(a.y);
  a2=2*(c.x-a.x),b2=2*(c.y-a.y),c2=sqr(c.x)-sqr(a.x)+sqr(c.y)-sqr(a.y);
  if(!dcmp(a1,0)){
    ans.y=c1/b1; 
    ans.x=(c2-ans.y*b2)/a2; 
  }else if(!dcmp(b1,0)){ 
    ans.x=c1/a1; 
    ans.y=(c2-ans.x*a2)/b2; 
  }else{ 
    ans.x=(c2*b1-c1*b2)/(a2*b1-a1*b2); 
    ans.y=(c2*a1-c1*a2)/(b2*a1-b1*a2); 
  }
  return ans; 
}

inline Point Get(Point A,Point B){
  return Point((A.x+B.x)/2,(A.y+B.y)/2);
}

int n;

int main(){
  freopen("t.in","r",stdin);
  freopen("t2.out","w",stdout);
  scanf("%d",&n);
  for (int i=1;i<=n;i++) P[i].read();
  random_shuffle(P+1,P+n+1);
  if (n==1){
    printf("%.5lf\n%.5lf %.5lf\n",0,P[1].x,P[1].y);
    return 0;
  }
  Point C,c; double R,r;
  C=Get(P[1],P[2]); R=Dis(P[1],C);
  for (int i=3;i<=n;i++)
    if (dcmp(Dis(P[i],C),R)>0){
      R=1e130;
      for (int j=1;j<i;j++){
	int k1=i,k2=i;
	for (int k=1;k<i;k++){
	  if (k==j) continue;
	  if (Cross(P[j]-P[i],P[k]-P[i])>0){
	    if (!k1 || Cos(P[j]-P[k],P[i]-P[k])>Cos(P[j]-P[k1],P[i]-P[k1]))
	      k1=k;
	  }else{
	    if (!k2 || Cos(P[j]-P[k],P[i]-P[k])>Cos(P[j]-P[k2],P[i]-P[k2]))
	      k2=k;
	  }
	}
	if (dcmp(acos(Cos(P[j]-P[k1],P[i]-P[k1]))+acos(Cos(P[j]-P[k2],P[i]-P[k2])),PI)>=0){
	  c=Get(P[i],P[j],P[k1]),r=Dis(c,P[i]);
	  if (r<R) R=r,C=c;
	  c=Get(P[i],P[j],P[k2]),r=Dis(c,P[i]);
	  if (r<R) R=r,C=c;
	  c=Get(P[i],P[j]),r=Dis(c,P[i]);
	  if (dcmp(Dis(P[k1],c),r)<=0 && dcmp(Dis(P[k2],c),r)<=0)
	    if (r<R)
	      R=r,C=c;
	}
      }
    }
  printf("%.5lf\n%.5lf %.5lf\n",R,C.x+eps,C.y+eps);
  return 0;
}


期望O(n) 棒极了


1336&1337


#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#define eps 1e-8
#define X first
#define Y second
using namespace std;
typedef pair<double,double> Point;

int n;
Point P[100005],C;
double R;

inline double sqr(double x) { return x*x; }

inline int dcmp(double a,double b)
{
	if (fabs(a-b)<eps) return 0;
	if (a<b) return -1; return 1;
}

inline double Dist(Point A,Point B)
{
	return sqrt((A.X-B.X)*(A.X-B.X)+(A.Y-B.Y)*(A.Y-B.Y));
}

inline Point Get(Point a,Point b,Point c)
{
      double a1,a2,b1,b2,c1,c2;
      Point ans;
      a1=2*(b.X-a.X),b1=2*(b.Y-a.Y),c1=sqr(b.X)-sqr(a.X)+sqr(b.Y)-sqr(a.Y);
      a2=2*(c.X-a.X),b2=2*(c.Y-a.Y),c2=sqr(c.X)-sqr(a.X)+sqr(c.Y)-sqr(a.Y);
      if(!dcmp(a1,0)) 
      { 
           ans.Y=c1/b1; 
           ans.X=(c2-ans.Y*b2)/a2; 
      } 
      else if(!dcmp(b1,0)) 
      { 
           ans.X=c1/a1; 
           ans.Y=(c2-ans.X*a2)/b2; 
      } 
      else
      { 
          ans.X=(c2*b1-c1*b2)/(a2*b1-a1*b2); 
          ans.Y=(c2*a1-c1*a2)/(b2*a1-b1*a2); 
      } 
      return ans; 
}

inline Point Get(Point A,Point B)
{
	return Point((A.X+B.X)/2,(A.Y+B.Y)/2);
}

inline void MinCover()
{
	C=P[1]; R=0;
    for(int i=2;i<=n;i++)
    	if (dcmp(Dist(P[i],C),R)>0)
		{
			C=P[i];
			R=0;
        	for (int j=1;j<=i;j++)
				if (dcmp(Dist(P[j],C),R)>0)
				{
					C=Get(P[i],P[j]);
					R=Dist(C,P[i]);
            		for (int k=1;k<=j;k++)
						if (dcmp(Dist(P[k],C),R)>0)
						{
							C=Get(P[i],P[j],P[k]);
							R=Dist(C,P[i]);
						}
				}
		}
}

int main()
{
	freopen("t.in","r",stdin);
	freopen("t.out","w",stdout);
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
		scanf("%lf%lf",&P[i].X,&P[i].Y);
	MinCover();
	printf("%.10lf\n%.10lf %.10lf\n",R,C.X,C.Y);
	return 0;
}

2823

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#define eps 1e-8
#define X first
#define Y second
using namespace std;
typedef pair<double,double> Point;

int n;
Point P[1000005],C;
double R;

inline double sqr(double x) { return x*x; }

inline int dcmp(double a,double b)
{
	if (fabs(a-b)<eps) return 0;
	if (a<b) return -1; return 1;
}

inline double Dist(Point A,Point B)
{
	return sqrt((A.X-B.X)*(A.X-B.X)+(A.Y-B.Y)*(A.Y-B.Y));
}

inline Point Get(Point a,Point b,Point c)
{
      double a1,a2,b1,b2,c1,c2;
      Point ans;
      a1=2*(b.X-a.X),b1=2*(b.Y-a.Y),c1=sqr(b.X)-sqr(a.X)+sqr(b.Y)-sqr(a.Y);
      a2=2*(c.X-a.X),b2=2*(c.Y-a.Y),c2=sqr(c.X)-sqr(a.X)+sqr(c.Y)-sqr(a.Y);
      if(!dcmp(a1,0)) 
      { 
           ans.Y=c1/b1; 
           ans.X=(c2-ans.Y*b2)/a2; 
      } 
      else if(!dcmp(b1,0)) 
      { 
           ans.X=c1/a1; 
           ans.Y=(c2-ans.X*a2)/b2; 
      } 
      else
      { 
          ans.X=(c2*b1-c1*b2)/(a2*b1-a1*b2); 
          ans.Y=(c2*a1-c1*a2)/(b2*a1-b1*a2); 
      } 
      return ans; 
}

inline Point Get(Point A,Point B)
{
	return Point((A.X+B.X)/2,(A.Y+B.Y)/2);
}

inline void MinCover()
{
	C=P[1]; R=0;
    for(int i=2;i<=n;i++)
    	if (dcmp(Dist(P[i],C),R)>0)
		{
			C=P[i];
			R=0;
        	for (int j=1;j<=i;j++)
				if (dcmp(Dist(P[j],C),R)>0)
				{
					C=Get(P[i],P[j]);
					R=Dist(C,P[i]);
            		for (int k=1;k<=j;k++)
						if (dcmp(Dist(P[k],C),R)>0)
						{
							C=Get(P[i],P[j],P[k]);
							R=Dist(C,P[i]);
						}
				}
		}
}

int main()
{
	freopen("t.in","r",stdin);
	freopen("t.out","w",stdout);
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
		scanf("%lf%lf",&P[i].X,&P[i].Y);
	MinCover();
	printf("%.2lf %.2lf %.2lf\n",C.X,C.Y,R);
	return 0;
}

查看评论

【Balkan2002】【BZOJ1336】Alien最小圆覆盖

Description给出N个点,让你画一个最小的包含所有点的圆。 Input先给出点的个数N,2...
  • CreationAugust
  • CreationAugust
  • 2015-09-22 19:47:19
  • 1716

BZOJ 1336 Balkan2002 Alien最小圆覆盖

题目大意:最小圆覆盖。 思路:再拍一份模板。做法见:http://blog.csdn.net/jiangyuze831/article/details/43950601 CODE:...
  • jiangyuze831
  • jiangyuze831
  • 2015-02-26 10:28:20
  • 775

BZOJ 1336([Balkan2002]Alien最小圆覆盖-最小覆盖圆)

1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 733  ...
  • nike0good
  • nike0good
  • 2013-07-22 09:19:00
  • 1453

最小圆覆盖,随机增量法.

#include #include #include /* algorithm:   A、令Ci表示为前i个点的最小覆盖圆。当加入新点pi时如果pi不在Ci-1里那么pi必定在Ci的边界上。 ...
  • lthyxy
  • lthyxy
  • 2011-08-04 21:48:05
  • 4709

bzoj1336&1337 最小圆覆盖

随机增量法求最小圆覆盖
  • AaronGZK
  • AaronGZK
  • 2016-04-27 23:50:37
  • 3725

[BZOJ 1336/1337][Balkan2002]Alien最小圆覆盖:随机增量法

点击这里查看原题随机增量法的思路: A:如果遇到某个点i在圆外,那么扩圆后这个点一定在圆上。 B:进行扩圆,如果有之前的点j在当前的圆外,那么i,j一定都在圆上,以i,j两点的连线作为圆的直径。 ...
  • SmallSXJ
  • SmallSXJ
  • 2017-05-10 15:17:30
  • 134

BZOJ 1337 最小圆覆盖 随机增量法

题目大意:求最小圆覆盖 我又写了一遍233 尼玛上一遍居然忘记random_shuffle了= = #include #include #include #include #includ...
  • PoPoQQQ
  • PoPoQQQ
  • 2015-04-17 16:08:50
  • 1172

最小覆盖圆的增量算法

题意:给出平面上的一些点,要求用一个最小的圆,把所有的点包围起来。 最小覆盖圆, 增量法: 假设圆O是前i-1个点得最小覆盖圆,加入第i个点,如果在圆内或边上则什么也不做。否,新得到的...
  • ACdreamers
  • ACdreamers
  • 2013-07-22 11:33:33
  • 5334

bzoj1336: [Balkan2002]Alien最小圆覆盖&&1337: 最小圆覆盖

1337传送门 1336传送门 随机增量法求最小圆覆盖。 假如已经求出了前i-1个点的最小圆覆盖,假如第i个点后,如果不在所求的圆內,那么这个点一定在新圆的边界上。这样我们只要枚举另外两个点就可...
  • zhouyuyang233
  • zhouyuyang233
  • 2017-05-24 20:26:04
  • 88

BZOJ 1336: [Balkan2002]Alien最小圆覆盖 随机增量法

Description给出N个点,让你画一个最小的包含所有点的圆。 Input先给出点的个数N,2...
  • just_sort
  • just_sort
  • 2017-04-25 20:46:34
  • 339
    个人资料
    持之以恒
    等级:
    访问量: 39万+
    积分: 1万+
    排名: 1232
    文章分类
    最新评论