因为都是倍数,可以考虑以最小的数为进制
然后从小到大装,不够的向高位借,类似小学减法,但感觉可卡?
#include<cstdio>
#include<algorithm>
#include<cstdlib>
using namespace std;
inline char nc()
{
static char buf[100000],*p1=buf,*p2=buf;
if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
return *p1++;
}
inline void read(int &x)
{
char c=nc(),b=1;
for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}
const int N=100005;
int n,m,tot;
int a[N],b[N],c[N];
int p[N];
int ans;
inline bool check(int k)
{
if(k>tot) return 0;
if(p[k]>0) return p[k]--,1;
if(check(k+1)) return p[k]=b[k+1]/b[k]-1,1;
return 0;
}
int main()
{
read(n); read(m);
for(int i=1;i<=n;i++) read(a[i]);
for(int i=1;i<=m;i++) read(b[i]);
sort(b+1,b+m+1);
for(int i=1;i<=m;i++)
if(b[i]!=b[i-1])
b[++tot]=b[i],c[tot]=1;
else
c[tot]++;
for(int i=1;i<=n;i++)
for(int j=tot;j>=1;j--)
p[j]+=a[i]/b[j],a[i]%=b[j];
for(int i=1;i<=tot;i++)
while(c[i]!=0)
{
if(check(i))
ans++,c[i]--;
else
return printf("%d\n",ans),0;
}
printf("%d\n",ans);
return 0;
}