[反序表 DP] 51Nod 1020 逆序排列

反序表那一套理论

来自:http://blog.csdn.net/synapse7/article/details/17093245


1. 先介绍反序表的概念:

令bi(1<=i<=n)为位于i左边但是大于i的元素个数,就能得到排列a1,a2,...,an的反序表b1,b2,...,b3

比如说,排列

5 9 1 8 2 6 4 7 3

有反序表

2 3 6 4 0 2 2 1 0(在1左边且大于1的有2个,在2左边且大于2的有3个,……)

2. 关键结论:

由1知,第1个元素的反序数取值范围是[0,n-1],第i个元素的反序数取值范围是[0,n-i],最后一个元素的反序数只能是0

(注意,每个反序数可以在区间内任意取值而不用考虑其他反序数的值,也就是说反序数是相互独立的。理由是反序表的个数亦为n!,而排列和反序表是一一对应的关系。)

3.

不难发现,每一趟bubble sort ,都会将反序数大于0的元素的反序数减1。若经过k趟之后排好序,则说明反序表中最大值为k。


那么这道题就是DP反序表的和


#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;

const int P=1e9+7;
int f[1005][20005];

int main(){
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  f[0][0]=1;
  for (int k=1;k<=20000;k++) f[0][k]+=f[0][k-1];
  for (int i=1;i<=1000;i++){
    for (int k=0;k<=20000;k++){
      if (k-i-1>=0)
	(f[i][k]=f[i-1][k]+P-f[i-1][k-i-1])%=P;
      else
	f[i][k]=f[i-1][k];
    }
    for (int k=1;k<=20000;k++) (f[i][k]+=f[i][k-1])%=P;
  }
  int T,n,K;
  scanf("%d",&T);
  while (T--){
    scanf("%d%d",&n,&K);
    if (K==0)
      printf("%d\n",f[n-1][0]);
    else
      printf("%d\n",(f[n-1][K]+P-f[n-1][K-1])%P);
  }
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值