[带标号DAG计数 容斥原理 多项式求逆 多项式求ln] COGS 有标号的DAG计数系列

题目链接 传送门I 传送门II 传送门III 传送门IV
题解戳这里
大致解法和思想是同这里一样的

DAG1

找出一个入度为 0 的点 那么答案为C1n21(n1)fn1 但是一张DAG里会有多个入度为 0 的点会重复计数
考虑容斥 得到

fn=k=1n(1)k1Ckn2k(nk)fnk

直接递推求解

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

const int N=5005;
const int P=10007;
const int Root2=2641;

inline int Pow(int a,int b){
  int ret=1; for (;b;b>>=1,a=a*a%P) if (b&1) ret=ret*a%P; return ret;
}

int _pow[P],C[N][N];
inline void Pre(){
  C[0][0]=1;
  for (int i=1;i<=5000;i++){
    C[i][0]=1;
    for (int j=1;j<=i;j++)
      C[i][j]=(C[i-1][j-1]+C[i-1][j])%P;
  }
  _pow[0]=1;
  for (int i=1;i<P;i++) _pow[i]=_pow[i-1]*2%P;
}

int n;
ll f[N];

int main(){
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  scanf("%d",&n); Pre();
  f[0]=1;
  for (int i=1;i<=n;i++){
    for (int j=1;j<=i;j++){
      int tmp=(ll)C[i][j]*_pow[j*(i-j)%(P-1)]*f[i-j]%P;
      if (j&1) f[i]+=tmp; else f[i]-=tmp;
    }
    f[i]=(f[i]%P+P)%P;
  }
  printf("%d\n",f[n]);
  return 0;
}

DAG2

考虑如何拆分 2k(nk)

2k(nk)=2n222k222(nk)22

这里我们需要求 2 的二次剩余
那么把DAG1中的柿子改为分治FFT或多项式求逆就可以了
但是在DAG1中不能这么做 因为模数不对 汗

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

const int N=600005;
const int P=998244353;
const int G=3; const int Root2=116195171;

inline int Pow(ll a,int b){
  ll ret=1; for (;b;b>>=1,a=a*a%P) if (b&1) ret=ret*a%P; return ret;
}

int num;
int w[2][N];
ll fac[N],inv[N];

inline void Pre(int n){
  num=n;
  ll g=Pow(G,(P-1)/num);
  w[1][0]=1; for (int i=1;i<num;i++) w[1][i]=g*w[1][i-1]%P;
  w[0][0]=1; for (int i=1;i<num;i++) w[0][i]=w[1][num-i];
}
int R[N];
inline void FFT(int *a,int n,int r){
  for (int i=0;i<n;i++) if (i<R[i]) swap(a[i],a[R[i]]);
  for (int i=1;i<n;i<<=1)
    for (int j=0;j<n;j+=(i<<1))
      for (int k=0;k<i;k++){
    ll x=a[j+k],y=(ll)w[r][num/(i<<1)*k]*a[j+i+k]%P;
    a[j+k]=(x+y)%P; a[j+i+k]=(x+P-y)%P;
      }
  if (!r) for (int i=0,inv=Pow(n,P-2);i<n;i++) a[i]=(ll)a[i]*inv%P;
}
inline void GetInv(int *a,int *b,int n){
  static int tmp[N];
  if (n==1) return void(b[0]=Pow(a[0],P-2));
  GetInv(a,b,n>>1);
  for (int i=0;i<n;i++) tmp[i]=a[i],tmp[n+i]=0;
  int L=0; while (!(n>>L&1)) L++;
  for (int i=1;i<(n<<1);i++) R[i]=(R[i>>1]>>1)|((i&1)<<L);
  FFT(tmp,n<<1,1); FFT(b,n<<1,1);
  for (int i=0;i<(n<<1);i++)
    tmp[i]=(ll)b[i]*(2+P-(ll)tmp[i]*b[i]%P)%P;
  FFT(tmp,n<<1,0);
  for (int i=0;i<n;i++) b[i]=tmp[i],b[n+i]=0;
}

int n,m;
int A[N],B[N];

int main(){
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  scanf("%d",&n);
  fac[0]=1; for (int i=1;i<=n;i++) fac[i]=fac[i-1]*i%P;
  for (m=1;m<=n;m<<=1); Pre(m<<1);
  A[0]=1;
  for (int i=1;i<=n;i++){
    ll tmp=fac[i]*Pow(Root2,(ll)i*i%(P-1))%P;
    tmp=Pow(tmp,P-2);
    A[i]=i&1?P-tmp:tmp;
  }
  GetInv(A,B,m);
  int Ans=fac[n]*B[n]%P*Pow(Root2,(ll)n*n%(P-1))%P;
  printf("%d\n",Ans);
  return 0;
}

DAG3

fn n 个点的DAG的个数
gn n 个点的连通DAG的个数
容斥的柿子

gn=fnk=1n1Ck1n1gkfnk

大力递推

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

const int N=5005;
const int P=10007;
const int Root2=2641;

inline int Pow(int a,int b){
  int ret=1; for (;b;b>>=1,a=a*a%P) if (b&1) ret=ret*a%P; return ret;
}

int _pow[P],C[N][N];
inline void Pre(){
  C[0][0]=1;
  for (int i=1;i<=5000;i++){
    C[i][0]=1;
    for (int j=1;j<=i;j++)
      C[i][j]=(C[i-1][j-1]+C[i-1][j])%P;
  }
  _pow[0]=1;
  for (int i=1;i<P;i++) _pow[i]=_pow[i-1]*2%P;
}

int n;
ll f[N],g[N];

int main(){
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  scanf("%d",&n); Pre();
  f[0]=1;
  for (int i=1;i<=n;i++){
    for (int j=1;j<=i;j++){
      int tmp=(ll)C[i][j]*_pow[j*(i-j)%(P-1)]*f[i-j]%P;
      if (j&1) f[i]+=tmp; else f[i]-=tmp;
    }
    f[i]=(f[i]%P+P)%P;
  }
  for (int i=0;i<=n;i++){
    g[i]=f[i];
    for (int j=1;j<i;j++)
      g[i]-=(ll)C[i-1][j-1]*g[j]*f[i-j];
    g[i]=(g[i]%P+P)%P;
  }
  printf("%d\n",g[n]);
  return 0;
}

DAG4

不论是由容斥的柿子还是多项式exp ln的组合意义都不难得出多项式的做法

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define cl(x) memset(x,0,sizeof(x))
using namespace std;
typedef long long ll;

const int N=600005;
const int P=998244353;
const int G=3; const int Root2=116195171;

inline int Pow(ll a,int b){
  ll ret=1; for (;b;b>>=1,a=a*a%P) if (b&1) ret=ret*a%P; return ret;
}

int num;
int w[2][N];
ll fac[N],inv[N];

inline void Pre(int n){
  num=n;
  ll g=Pow(G,(P-1)/num);
  w[1][0]=1; for (int i=1;i<num;i++) w[1][i]=g*w[1][i-1]%P;
  w[0][0]=1; for (int i=1;i<num;i++) w[0][i]=w[1][num-i];
}
int R[N];
inline void FFT(int *a,int n,int r){
  for (int i=0;i<n;i++) if (i<R[i]) swap(a[i],a[R[i]]);
  for (int i=1;i<n;i<<=1)
    for (int j=0;j<n;j+=(i<<1))
      for (int k=0;k<i;k++){
    ll x=a[j+k],y=(ll)w[r][num/(i<<1)*k]*a[j+i+k]%P;
    a[j+k]=(x+y)%P; a[j+i+k]=(x+P-y)%P;
      }
  if (!r) for (int i=0,inv=Pow(n,P-2);i<n;i++) a[i]=(ll)a[i]*inv%P;
}
inline void GetInv(int *a,int *b,int n){
  static int tmp[N];
  if (n==1) return void(b[0]=Pow(a[0],P-2));
  GetInv(a,b,n>>1);
  for (int i=0;i<n;i++) tmp[i]=a[i],tmp[n+i]=0;
  int L=0; while (!(n>>L&1)) L++;
  for (int i=1;i<(n<<1);i++) R[i]=(R[i>>1]>>1)|((i&1)<<L);
  FFT(tmp,n<<1,1); FFT(b,n<<1,1);
  for (int i=0;i<(n<<1);i++)
    tmp[i]=(ll)b[i]*(2+P-(ll)tmp[i]*b[i]%P)%P;
  FFT(tmp,n<<1,0);
  for (int i=0;i<n;i++) b[i]=tmp[i],b[n+i]=0;
}

int n,m,F[N];
int A[N],B[N],invB[N];

inline void Calc(){
  A[0]=1;
  for (int i=1;i<=n;i++){
    ll tmp=fac[i]*Pow(Root2,(ll)i*i%(P-1))%P;
    tmp=Pow(tmp,P-2);
    A[i]=i&1?P-tmp:tmp;
  }
  cl(B); GetInv(A,B,m);
  for (int i=0;i<=n;i++)
    F[i]=fac[i]*B[i]%P*Pow(Root2,(ll)i*i%(P-1))%P;
}

int main(){
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  scanf("%d",&n);
  fac[0]=1; for (int i=1;i<=n;i++) fac[i]=fac[i-1]*i%P;
  inv[1]=1; for (int i=2;i<=n;i++) inv[i]=inv[P%i]*(P-P/i)%P;
  inv[0]=1; for (int i=1;i<=n;i++) inv[i]=(inv[i]*inv[i-1])%P;
  for (m=1;m<=n;m<<=1); Pre(m<<1);
  Calc();
  cl(A); cl(B);
  for (int i=1;i<=n;i++) A[i]=F[i]*inv[i-1]%P;
  for (int i=0;i<=n;i++) B[i]=F[i]*inv[i]%P;
  GetInv(B,invB,m);
  FFT(A,m<<1,1); FFT(invB,m<<1,1);
  for (int i=0;i<(m<<1);i++) A[i]=(ll)A[i]*invB[i]%P;
  FFT(A,m<<1,0);
  printf("%d\n",(ll)A[n]*fac[n-1]%P);
  return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值