[替罪羊树 动态点分治 替罪羊式重构] BZOJ 3435 [Wc2014]紫荆花之恋 & UOJ #55 【WC2014】紫荆花之恋

网上题解都说的很详细了吧
考虑点分治 dist(i,j)Ri+Rj 可以转化成 DjRjRiDi 其中 Di 表示到重心的距离
开两颗平衡树维护 一颗统计 一颗去重
然后 因为要动态加点 点分树的性质不能保证
所以当一个子树的大小超过某个阈值时 就把点分树替罪羊式重构下
说起来真轻巧

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}
inline void write(ll x) {
  if (!x) return (void)printf("0\n");
  static short s[20],t;
  while (x) s[++t]=x%10,x/=10; while (t) putchar('0'+s[t--]);
  putchar('\n');
}

const int N=100005;
const int K=100;

const double ab=0.75;
namespace SGT{
  const int MN=N*K;
  struct node{
    node *ch[2];
    int key,size;
    void update() { size=ch[0]->size+ch[1]->size+1; }
    bool bad() { return ch[0]->size>=size*ab+5 || ch[1]->size>=size*ab+5; }
  }Mem[MN],*null;
  node *Stack[MN]; int pnt;
  node *lst[MN]; int len;
  inline void Init(){
    null=Mem; null->size=0; null->ch[0]=null->ch[1]=null;
    for (int i=1;i<MN;i++) Stack[++pnt]=Mem+i;
  }
  inline node *New(int key){
    node *t=Stack[pnt--];
    t->ch[0]=t->ch[1]=null; t->size=1; t->key=key;
    return t;
  }
  inline void travel(node *p){
    if (p==null) return;
    travel(p->ch[0]); lst[++len]=p; travel(p->ch[1]);
  }
  inline node *divide(int l,int r){
    if (l>r) return null;
    int mid=(l+r)>>1;
    lst[mid]->ch[0]=divide(l,mid-1); lst[mid]->ch[1]=divide(mid+1,r); lst[mid]->update();
    return lst[mid];
  }
  inline void rebuild(node *&p){
    len=0; travel(p); p=divide(1,len);
  }
  inline node **insert(node *&p,int key){
    if (p==null){ p=New(key); return &null; }
    p->size++;
    node **ret=insert(p->ch[key>=p->key],key);
    if (p->bad()) ret=&p;
    return ret;
  }
  inline int Kth(node *root,int k){
    node *p=root;
    while (p!=null){
      if (k==p->ch[0]->size+1) return p->key;
      else if (p->ch[0]->size>=k) p=p->ch[0];
      else k-=p->ch[0]->size+1,p=p->ch[1];
    }
  }
  inline int Rank(node *root,int val){
    node *p=root; int ret=1;
    while (p!=null)
      if (p->key>=val)
    p=p->ch[0];
      else
    ret+=p->ch[0]->size+1,p=p->ch[1];
    return ret;
  }
  inline void clear(node *p){
    if (p==null) return;
    clear(p->ch[0]); Stack[++pnt]=p; clear(p->ch[1]);
  }
  struct Set{
    node *root;
    void Init() { root=null; }
    inline void Insert(int val){
      node **p=insert(root,val);
      if (*p!=null) rebuild(*p);
    }
    void Clear(){
      clear(root); root=null;
    }
    int Query(int x){
      return Rank(root,x+1)-1;
    }
  };
}

SGT::Set sr[N],sf[N];

struct edge{
  int u,v,w,next;
}G[N<<1];
int head[N],inum;
inline void add(int u,int v,int w,int p){
  G[p].u=u; G[p].v=v; G[p].w=w; G[p].next=head[u]; head[u]=p;
}
#define V G[p].v

int n,val[N];
int cnt[N];
int del[N],clk,flag[N];

int size[N]; int sum,root,minv;

inline void Root(int u,int fa){
  size[u]=1; int maxv=0;
  for (int p=head[u];p;p=G[p].next)
    if (flag[V]==clk && del[V]!=clk && V!=fa)
      Root(V,u),size[u]+=size[V],maxv=max(maxv,size[V]);
  maxv=max(maxv,sum-size[u]);
  if (maxv<minv) minv=maxv,root=u;
}

vector<int> son[N];

int cur;
int fat[N][K],dis[N][K];

inline void clear(int u){
  int pp=son[u].size();
  for (int i=0;i<pp;i++){
    int v=son[u][i]; flag[v]=clk;
    if (*fat[v]!=1) sf[v].Clear(); sr[v].Clear(); cnt[v]=0;
    while (fat[v][*fat[v]]!=u) --*fat[v],--*dis[v]; --*fat[v],--*dis[v];
    if (v!=u) son[v].clear();
  }
  son[u].clear();
}

inline void dfs(int u,int fa,int d){
  cnt[cur]++; size[u]=1; son[cur].push_back(u);
  fat[u][++*fat[u]]=cur; dis[u][++*dis[u]]=d;
  sr[cur].Insert(d-val[u]);
  if (*fat[u]!=1) sf[cur].Insert(dis[u][*dis[u]-1]-val[u]);
  for (int p=head[u];p;p=G[p].next)
    if (flag[V]==clk && del[V]!=clk && V!=fa)
      dfs(V,u,d+G[p].w),size[u]+=size[V];
}

inline void Divide(int u){
  del[u]=clk; cur=u; dfs(u,0,0);
  for (int p=head[u];p;p=G[p].next)
    if (del[V]!=clk && flag[V]==clk){
      sum=size[V]; minv=1<<30;
      Root(V,0);
      Divide(root);
    } 
}

inline ll Query(int u){
  ll ans=0;
  for (int i=*dis[u]-1;i;i--){
    int d=dis[u][i],f=fat[u][i];
    ans+=sr[f].Query(val[u]-d);
    ans-=sf[fat[u][i+1]].Query(val[u]-d);
  }
  return ans;
}

const double cd=0.75;

int main(){
  ll lastans=0; int a,b,c; const int P=1e9; 
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  read(n); read(n);
  SGT::Init();
  for (int i=1;i<=n;i++) sr[i].Init(),sf[i].Init();
  read(a); read(b); read(val[1]);
  cnt[1]=1; son[1].push_back(1);
  sr[1].Insert(0-val[1]); fat[1][++*fat[1]]=1; dis[1][++*dis[1]]=0;
  write(lastans=0);
  for (int i=2;i<=n;i++){
    clk=i;
    read(a); read(b); read(val[i]);
    a=a^(lastans%P);
    add(a,i,b,++inum); add(i,a,b,++inum);
    for (int j=1;j<=*dis[a];j++) fat[i][++*fat[i]]=fat[a][j],dis[i][++*dis[i]]=dis[a][j]+b;
    fat[i][++*fat[i]]=i; dis[i][++*dis[i]]=0;
    for (int j=*dis[i];j;j--){
      cnt[fat[i][j]]++; son[fat[i][j]].push_back(i);
      sr[fat[i][j]].Insert(dis[i][j]-val[i]);
      if (j!=*dis[i])
    sf[fat[i][j+1]].Insert(dis[i][j]-val[i]);
    }
    write(lastans+=Query(i));
    int pp=son[2].size();
    int t=0;
    for (int j=*dis[i];j>1;j--)
      if (cnt[fat[i][j]]>cd*cnt[fat[i][j-1]]+5)
    t=fat[i][j-1];
    if (t){
      int tmp=cnt[t];
      clear(t);
      sum=tmp; minv=1<<30; Root(t,0);
      Divide(root);
    }
  }
  return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节的无向图,每个节都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节 $1$ 到节 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格 第一行包含两个正整数 $n$ 和 $m$,表示节数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是 $1$ 到 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解 $1$ 到 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意:Floyd算法计算任意两之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值