详见黄学长的博客
大概就是
所有在模三意义下同余的位置是等价的 可以看成一个点
一个棋子跨过另一个 则可以视为两个棋子合成一个
然后状压记忆化搜索就行了 注意需要预处理边界的情况 有些合成是不合法的 因为会超出边界
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<map>
#define cl(x) memset(x,0,sizeof(x))
#define read(x) scanf("%d",&(x))
using namespace std;
struct sta{
int a[9];
sta() { cl(a); }
int &operator [](int x){ return a[x]; }
bool operator < (const sta& B) const{
for (int i=0;i<9;i++) if (a[i]^B.a[i]) return a[i]<B.a[i];
return 0;
}
}S,T;
map<sta,int> f;
#define P(x,y) (((x)%3)*3+((y)%3))
int K;
int cnt[9];
const int dx[]={0,0,1,-1,1,-1,1,-1};
const int dy[]={1,-1,0,0,1,1,-1,-1};
int n,m;
int trans[9][9];
int ed;
int u[100],v[100],w[100];
inline void Pre(){
memset(trans,-1,sizeof(trans));
cl(cnt);
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++){
cnt[P(i,j)]++;
for (int k=0;k<8;k++)
if (i+dx[k]*2>=1 && i+dx[k]*2<=n && j+dy[k]*2>=1 && j+dy[k]*2<=m)
trans[P(i,j)][P(i+dx[k],j+dy[k])]=P(i+dx[k]*2,j+dy[k]*2);
}
ed=0;
for (int i=0;i<9;i++)
for (int j=0;j<9;j++)
if (~trans[i][j])
ed++,u[ed]=i,v[ed]=j,w[ed]=trans[i][j];
}
inline int dfs(sta cur){
if (f.count(cur)) return f[cur];
for (int i=1;i<=ed;i++)
if (cur[u[i]] && cur[v[i]]){
cur[u[i]]--,cur[v[i]]--,cur[w[i]]++;
if (cur[w[i]]>cnt[w[i]]) continue;
if (dfs(cur)) return f[cur]=1;
cur[u[i]]++,cur[v[i]]++,cur[w[i]]--;
}
return f[cur]=0;
}
int main(){
int x,y;
freopen("t.in","r",stdin);
freopen("t.out","w",stdout);
while (~read(K)){
read(n); read(m); read(x); read(y);
T=sta(); T[P(x,y)]++; S=sta();
for (int i=1;i<=K;i++)
read(x),read(y),S[P(x,y)]++;
Pre(); f.clear(); f[T]=1;
if (dfs(S))
printf("Yes\n");
else
printf("No\n");
}
return 0;
}