[Boruvka算法 曼哈顿距离最大生成树] 省选模拟赛 4 C. 树树树 mst

1098人阅读 评论(2) 收藏 举报
分类:

题目大意 求曼哈顿距离最大生成树 n100000

Boruvka算法是什么呢
这里写图片描述

也就是说 我们只要每次求一个连通块连出去的最远的边 把这些边都加入
只要这样 O(logn)就能得到一棵最大生成树

每次求两个连通块之间最大边的时候,就是求 |xixj|+|yiyj| 的最大值,分情况用set维护即可。

但是神犇是这么说的

T3,其实可以打prim,O(nlogn),快排的log……

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<set>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<ll,int> abcd;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

const int N=100005;

const int dx[]={1,-1,1,-1};
const int dy[]={-1,-1,1,1};

set<abcd> Set[4];

int n; ll Ans=0;
int x[N],y[N];
ll a[N][4];

int fat[N];
#define pb push_back
vector<int> g[N];

inline int Fat(int u){
  return fat[u]==u?u:fat[u]=Fat(fat[u]);
}
inline bool Merge(int x,int y){
  x=Fat(x); y=Fat(y); if (x==y) return 0;
  for (int i=0;i<(int)g[x].size();i++) g[y].pb(g[x][i]);
  g[x].clear();
  fat[x]=y; return 1; 
}

struct edge{
  int u,v,w;
  edge(int u=0,int v=0,int w=0):u(u),v(v),w(w) { }
}ed[N];
int pnt=0;
int main(){
  freopen("mst.in","r",stdin);
  freopen("mst.out","w",stdout);
  read(n);
  for (int i=1;i<=n;i++){
    read(x[i]); read(y[i]);
    for (int j=0;j<4;j++){
      a[i][j]=x[i]*dx[j]+y[i]*dy[j];
      Set[j].insert(abcd(a[i][j],i));
    }
  }
  for (int i=1;i<=n;i++) fat[i]=i,g[i].pb(i);
  Ans=0;
  while (1){
    int flag=0; pnt=0;
    for (int i=1;i<=n;i++){
      if (fat[i]!=i) continue;
      if (g[i].size()==n){
    flag=1; break;
      }
      for (int j=0;j<(int)g[i].size();j++)
    for (int k=0;k<4;k++)
      Set[k].erase(abcd(a[g[i][j]][k],g[i][j]));
      ll Max=-1LL<<40,v;
      for (int k=0;k<4;k++){
    ll maxu=-1LL<<40,maxv;
    for (int j=0;j<(int)g[i].size();j++)
      if (a[g[i][j]][k]>=maxu)
        maxu=a[g[i][j]][k];
    set<abcd>::iterator it=Set[k^3].end(); it--;
    maxv=it->first;
    if (maxu+maxv>=Max)
      Max=maxu+maxv,v=it->second;
      }
      ed[++pnt]=edge(i,v,Max);
      for (int j=0;j<(int)g[i].size();j++)
    for (int k=0;k<4;k++)
      Set[k].insert(abcd(a[g[i][j]][k],g[i][j]));
    }
    if (flag) break;
    for (int j=1;j<=pnt;j++)
      if (Merge(ed[j].u,ed[j].v))
    Ans+=ed[j].w;
  }
  printf("%lld\n",Ans);
  return 0;
}
查看评论

最小生成树——Prim算法、Kruskal算法和Boruvka算法

最小生成树的三种算法Prim\Kruskal\Boruvka
  • BigFatSheep
  • BigFatSheep
  • 2017-11-09 03:58:26
  • 395

最小生成树的3个算法

最小生成树——Prim、Kruskal、Sollin(Boruvka)   本文内容框架: 1.Prim算法及其基于优先队列实现       2.Kruskal算法   ...
  • DJS_K_D
  • DJS_K_D
  • 2015-08-31 11:16:31
  • 2375

ZOJ 1203 Swordfish (经典MST ~ Kruscal)Boruvka算法

链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=203 Description:  We all remember th...
  • u012823258
  • u012823258
  • 2014-05-04 19:55:04
  • 1414

Prime算法和Krustal算法(转自博客园华山大师兄)

 Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Verte...
  • LminY
  • LminY
  • 2016-01-04 03:31:32
  • 4174

[BZOJ2177][最小/最大(曼哈顿距离)生成树]曼哈顿最小生成树

题意给定平面内一些点,求最小曼哈顿距离生成树看这篇咯http://blog.csdn.net/acm_cxlove/article/details/8890003#include #include ...
  • Coldef
  • Coldef
  • 2017-03-17 19:39:02
  • 900

codeforces 100959B Airports 曼哈顿距离最大生成树

写了两种做法。 1. 对于每个点,向八个象限建最长边,注意最长边没有最短边的对称性,故每个点不能只枚举4个方向,要8个方向都枚举。这个做法速度较快,用的树状数组: #include using ...
  • u013944294
  • u013944294
  • 2017-10-02 18:56:58
  • 200

关于曼哈顿距离下的最小生成树

这些天一直在集训,考了十几次…… zzy出了一道曼哈顿距离下的最小生成树,考场上我没做出来…… 嗯……这种题目的问题在于,你没办法把每两个点都建一条边…… 但是因为是曼哈顿距离,所以有一些特殊性...
  • OrpineX
  • OrpineX
  • 2012-03-21 14:49:00
  • 3917

A*寻路算法(曼哈顿距离)

前一些天,在群有人问到A*算法的问题。之前我已经有实现过,并将之放到github上(https://github.com/XJM2013/A_Star);有兴趣的可以下载下来看看。 这里上传了一个相当...
  • a374826954
  • a374826954
  • 2015-06-08 00:00:15
  • 6987

A*寻路 曼哈顿启发式算法 初探 经典寻路算法

作者: Patrick Lester 译者:Panic 2005年3月18日 译者序:很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开...
  • linjiayun
  • linjiayun
  • 2013-12-17 18:36:27
  • 2056

A*,那个传说中的算法

老王带你揭开传说中的面纱
  • zgwangbo
  • zgwangbo
  • 2016-07-31 14:12:30
  • 23550
    个人资料
    持之以恒
    等级:
    访问量: 40万+
    积分: 1万+
    排名: 1228
    文章分类
    最新评论