POJ 1222 EXTENDED LIGHTS OUT (异或消元)

分析:一共有30个开关,30个灯,设a[i][j]代表第j个开关对第i个灯的贡献,那么a[i][j]=1或者0,其中a[i][i]=1,周围4个灯的贡献为1,其他都是0,用x[i]表示第i个开关有无按下,c[i]表示第i个灯的初始状态,那么对于第i个灯,得到异或方程:

c[i] xor (a[i][0]x[0]) xor (a[i][1]x[1]) xor ... xor (a[i][29]x[29])=0(a[i][0]x[0]) xor (a[i][1]x[1]) xor ... xor (a[i][29]x[29])=0 xor c[i]

得到一个异或方程组,这个时候异或消元,找出方程组的解即可。

这里也不需要按照高斯消元来写(上一次我就是按照高斯消元写的。。。),详见代码:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define LL long long
#define FOR(i,x,y)  for(int i = x;i < y;++ i)
#define IFOR(i,x,y) for(int i = x;i > y;-- i)

using namespace std;

const int maxn = 30;

int a[maxn];
int n,mat[5][6],c[30];

void init(){
    FOR(i,0,5){
        FOR(j,0,6)  scanf("%d",&mat[i][j]),c[6*i+j] = 0^mat[i][j];
    }
    FOR(i,0,5){
        FOR(j,0,6){
            int u = i*6+j;
            a[u] = (1<<(30-u))^c[u];
            if(i > 0)   a[u] ^= (1<<(36-u));
            if(i < 4)   a[u] ^= (1<<(24-u));
            if(j > 0)   a[u] ^= (1<<(31-u));
            if(j < 5)   a[u] ^= (1<<(29-u));
        }
    }
}

int xorguass(int n){
    int row = 0;
    for(int i = 30;i >= 0;-- i){
        int j;
        for(j = row;j < n;++ j){
            if(a[j] & (1<<i))   break;
        }
        if(j != n){
            swap(a[j],a[row]);
            for(j = 0;j < n;++ j){
                if(j == row)    continue;
                if(a[j] & (1<<i))   a[j] ^= a[row];
            }
        }
        ++ row;
    }
    return row;
}

int ans[5][6];

void work(){
    int n = xorguass(30);
    FOR(i,n,30) a[i] = 0;
    FOR(i,0,30){
        ans[i/6][i%6] = a[i]%2;
    }
    FOR(i,0,5){
        FOR(j,0,5)  printf("%d ",ans[i][j]);
        printf("%d\n",ans[i][5]);
    }
}

int main()
{
    //freopen("test.in","r",stdin);
    int T,tCase = 0;    scanf("%d",&T);
    while(T--){
        printf("PUZZLE #%d\n",++tCase);
        init();
        work();
    }
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014610830/article/details/49896063
文章标签: 异或消元 数学
上一篇HDU 1402 A * B Problem Plus (FFT求高精度乘法)
下一篇ZOJ 3777 Problem Arrangement (状压DP)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭