算法-提升

​​​​​​​

:实际值

:t-1次分类器的预测值

 :t次的分类器

 :损失函数

:正则项

 :常数

 

 由1到2,是因为做了转换,看成所有落在叶子1的节点,也就是w1(g1+g3+g4+……+gi)这种,加和有1-n换成了i-T(所有叶子节点)

 

adaboost用来

第一次,每个w都相同,都是1/N, 

 

m是指不同的分类器,共M类, 

 :如果预测值和实际值不相同,就是True,这个m次分类器的错的w就会被拿出来,

如果预测值和实际值相同,就是FALSE,这个m次分类器的错的w就不会被拿出来。

因为这个是算误差率的,分错的乘权值,就是分错的结果。

这个em是指m分类器的误差率

:一个随机的分类器,em是0.5 ,好一点的分类器,em小于0.5,不好的分类器,cm大于0.5.

针对这种三种情况:

好分类器随机分类器坏分类器
em<0.50.5>0.5
am>0=0<0

也就是说,如果m分类器好,他的系数应该高,如果m分类器不好,他的系数应该就小。

 

 

这个是针对分类器的每一个参数来说,

如果第i个分对了,yi * Gm(xi) > 0, 一般来说am > 0, 所以 exp里面的<0, 指数函数的话,红框里面<1, 也就是说,w(m+1)会比wm稍微小一点;

如果第i个分错了,yi * Gm(xi) < 0, 一般来说am > 0, 所以 exp里面的>0, 指数函数的话,红框里面>1, 也就是说,w(m+1)会比wm稍微大一点;

因为我们的初衷就是讲分错的数据的权值大一点,让他在之后的分类器中多考虑一些。

举例:

样本选择上:

Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。

Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。

样例权重:

Bagging:使用均匀取样,每个样例的权重相等

Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大。

预测函数:

Bagging:所有预测函数的权重相等。

Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。

并行计算:

Bagging:各个预测函数可以并行生成

Boosting:各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果。

差别部分内容转自《Bagging和Boosting 概念及区别

High variance 是model过于复杂overfit,记住太多细节noise,受outlier影响很大;high bias是underfit,model过于简单,cost function不够好。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值