AI视野·今日CS.Robotics 机器人学论文速览
Mon, 27 Sep 2021
Totally 21 papers
👉上期速览✈更多精彩请移步主页
Interesting:
📚SIM2REALVIZ, 机器人位姿估计可视化系统(from Liris, INSA-Lyon 法国国立应用科学学院)
📚用于室内机器人操作的高精度深度图生成, (from 美国丰田研究院)
code:https://sites.google.com/view/stereoformobilemanipulation
Daily Robotics Papers
RMPs for Safe Impedance Control in Contact-Rich Manipulation Authors Seiji Shaw, Ben Abbatematteo, George Konidaris 操作空间中的可变阻抗控制是一种学习接触丰富操作行为的有前途的方法。这种方法的主要挑战之一是产生一种确保手臂和环境安全的操作行为。这种行为通常是通过惩罚不安全行为的奖励函数来实现的,例如障碍物碰撞,关节限制扩展,但这种方法并不总是有效,并且不会导致可以在稍微不同的环境中重用的行为。 |
CLIPort: What and Where Pathways for Robotic Manipulation Authors Mohit Shridhar, Lucas Manuelli, Dieter Fox 我们如何才能让机器人具备精确操纵物体的能力,同时还能根据抽象概念对它们进行推理?最近的操纵工作表明,端到端网络可以学习需要精确空间推理的灵巧技能,但这些方法往往无法推广到新目标或快速学习跨任务的可转移概念。同时,通过对大规模互联网数据进行训练,在学习视觉和语言的可概括语义表示方面取得了很大进展,但是这些表示缺乏细粒度操作所需的空间理解。为此,我们提出了一个框架,它结合了两个世界中最好的两个流体系结构与语义和空间路径,用于基于视觉的操作。具体来说,我们提出了 CLIPort,这是一种语言条件模仿学习代理,它结合了 CLIP 1 的广泛语义理解和 Transporter 2 的空间精度 where。我们的端到端框架能够解决各种语言指定的桌面任务,从打包看不见的物体到折叠布料,所有这些任务都没有任何物体姿势、实例分割、记忆、符号状态或句法结构的明确表示。在模拟和现实世界设置中的实验表明,我们的方法在少数镜头设置中具有数据效率,并且可以有效地推广到可见和不可见的语义概念。 |
Free Energy Principle for State and Input Estimation of a Quadcopter Flying in Wind Authors Fred Bos, Ajith Anil Meera, Dennis Benders, Martijn Wisse 来自神经科学的自由能原理通过称为动态期望最大化 DEM 的数据驱动模型学习算法提供了一种受大脑启发的感知方案。本文旨在介绍一种实验设计,以首次实验确认 DEM 作为真实机器人的状态和输入估计器的有用性。通过在未建模的风动力学下进行的一系列四轴飞行器飞行实验,我们证明 DEM 可以利用来自有色噪声的信息,通过使用广义坐标进行准确的状态和输入估计。我们通过其最小的估计误差证明了 DEM 在有色噪声下的状态估计相对于其他基准(如状态增强、SMIKF 和卡尔曼滤波)的优越性能。我们展示了 DEM 和未知输入观察者 UIO 在输入估计方面的相似性。 |