AI视野·今日CS.Robotics 机器人学论文速览
Mon, 25 Sep 2023
Totally 36 papers
👉上期速览✈更多精彩请移步主页
Interesting:
📚CloudGripper, 一套云化的机器抓取人数据采集系统,包含了32个机械臂的集群。(from KTH Royal Institute of Technology)
📚GELLO, 一套开源的机械臂遥操作平台,适配多个机械臂。(from 伯克利)
Daily Robotics Papers
E(2)-Equivariant Graph Planning for Navigation Authors Linfeng Zhao, Hongyu Li, Taskin Padir, Huaizu Jiang, Lawson L.S. Wong 机器人导航的学习是一项关键且具有挑战性的任务。现实世界数据集的稀缺性和昂贵性需要有效的学习方法。在这封信中,我们在规划 2D 导航时利用欧几里德对称性,该对称性源于参考系之间的欧几里德变换并支持参数共享。为了解决非结构化环境的挑战,我们将导航问题制定为几何图上的规划,并开发等变消息传递网络来执行值迭代。此外,为了处理多相机输入,我们提出了一个可学习的等变层来将特征提升到所需的空间。我们对五种不同的任务进行全面评估,包括结构化和非结构化环境,以及已知和未知的地图、给定点目标或语义目标。 |
Robotic Offline RL from Internet Videos via Value-Function Pre-Training Authors Chethan Bhateja, Derek Guo, Dibya Ghosh, Anikait Singh, Manan Tomar, Quan Vuong, Yevgen Chebotar, Sergey Levine, Aviral Kumar 事实证明,互联网数据的预训练是许多现代机器学习系统广泛泛化的关键因素。如何才能在机器人强化学习 RL 中实现此类功能? 离线 RL 方法从机器人经验数据集中学习,提供了一种将先前数据利用到机器人学习流程中的方法。然而,这些方法与视频数据(例如 Ego4D(可用于机器人技术的最大先验数据集))存在类型不匹配,因为视频仅提供观察体验,而没有 RL 方法所需的动作或奖励注释。在本文中,我们开发了一个系统,用于在机器人离线强化学习中利用大规模人类视频数据集,完全基于通过时间差异学习来学习价值函数。我们表明,与其他从视频数据学习的方法相比,视频数据集上的价值学习所学习的表示更有利于下游机器人离线强化学习。我们的系统称为 V PTR,它将视频数据预训练的优点与对不同机器人数据进行训练的机器人离线 RL 方法相结合,从而产生性能更好、稳健且广泛泛化的操作任务的价值函数和策略。在真实 WidowX 机器人上的几个操作任务中,我们的框架生成的策略比以前的方法大大改进。 |
GELLO: A General, Low-Cost, and Intuitive Teleoperation Framework for Robot Manipulators Authors Philipp Wu, Yide Shentu, Zhongke Yi, Xingyu Lin, Pieter Abbeel 从人类演示中进行模仿学习是教授机器人新技能的强大框架。然而,学习策略的性能受到示范数据的质量、规模和多样性的瓶颈。在本文中,我们的目标是通过提出 GELLO 来降低收集大量高质量人类演示数据的障碍,GELLO 是一种用于构建低成本且直观的机器人操纵遥操作系统的通用框架。给定一个目标机器人手臂,我们利用 3D 打印零件和现成的电机构建了一个与目标手臂具有相同运动结构的 GELLO 控制器。 GELLO 易于构建且使用直观。通过广泛的用户研究,我们表明,与模仿学习文献中常用的远程操作设备(例如 VR 控制器和 3D 太空鼠标)相比,GELLO 能够实现更可靠、更高效的演示收集。我们进一步展示了 GELLO 执行复杂的双手动和接触丰富的操作任务的能力。为了让每个人都能使用 GELLO,我们为 3 种常用机械臂 Franka、UR5 和 xArm 设计并构建了 GELLO 系统。 |
PyPose v0.6: The Imperative Programming Interface for Robotics Authors Zitong Zhan, Xiangfu Li, Qihang Li, Haonan He, Abhinav Pandey, Haitao Xiao, Yangmengfei Xu, Xiangyu Chen, Kuan Xu, Kun Cao, Zhipeng Zhao, Zihan Wang, Huan Xu, Zihang Fang, Yutian Chen, Wentao Wang, Xu Fang, Yi Du, Tianhao Wu, Xiao Lin, Yuheng Qiu, Fan Yang, Jingnan Shi, Shaoshu Su, Yiren Lu, Taimeng Fu, Karthik Dantu, Jiajun Wu, Lihua Xie, Marco Hutter, Luca Carlone, Sebastian Scherer, Daning Huang, Yaoyu Hu, Junyi Geng, Chen Wang PyPose 是一个用于机器人学习的开源库。它将基于学习的方法与基于物理的优化相结合,从而实现无缝的端到端机器人学习。由于其精心设计的应用程序编程接口API和高效的实现,它已被用于许多任务。自 2022 年初首次推出以来,PyPose 经历了重大增强,将各种新功能纳入其平台。为了满足日益增长的理解和使用库的需求,并减少新用户的学习曲线,我们介绍了命令式编程接口的基本设计原理,并通过一个极其简单的 Dubins 汽车示例展示了各种功能和模块的灵活使用。 |
Evolving Spiking Neural Networks to Mimic PID Control for Autonomous Blimps Authors Tim Burgers, Stein Stroobants, Guido de Croon 近年来,人工神经网络 ANN 已成为机器人控制的标准。然而,大规模人工神经网络的一个显着缺点是功耗增加。考虑到功率和重量的严格限制,这成为设计自主飞行器时的一个关键问题。特别是对于以其超长耐用性而闻名的小型飞艇来说,高效的控制方法至关重要。尖峰神经网络 SNN 可以提供一种解决方案,促进节能和异步事件驱动的处理。在本文中,我们发展了 SNN,仅依靠机载传感和处理能力来精确控制非中性浮力室内飞艇的高度。与之前的研究相比,飞艇的高度跟踪性能显着提高,显示出减少的振荡和最小的稳态误差。 SNN 的参数通过进化算法进行优化,使用比例微分积分 PID 控制器作为目标信号。我们在研究各种隐藏层结构的同时开发了两个互补的 SNN 控制器。第一个控制器对控制误差做出快速响应,减轻超调和振荡,而第二个控制器则最大限度地减少由于非中性浮力引起的漂移而导致的稳态误差。 |