AI视野·今日CS.Robotics 机器人学论文速览
Wed, 27 Sep 2023
Totally 48 papers
👉上期速览✈更多精彩请移步主页
Interesting:
📚***Tactile Estimation of Extrinsic Contact,基于触觉的外部接触估计与稳定放置 (from 三菱电机)
📚充气型柔性触觉传感器, 气囊型触觉传感器用于直肠癌早期息肉肿块检测(from University of Texas at Austin.)
📚触觉仿真器, (from Tel-Aviv University)
Daily Robotics Papers
Towards High Efficient Long-horizon Planning with Expert-guided Motion-encoding Tree Search Authors Tong Zhou, Erli Lyu, Jiaole Wang, Guangdu Cen, Ziqi Zha, Senmao Qi, Max Q. H. Meng 自动驾驶有望提高安全性、优化交通管理并将交通便利性提升到新水平。 |
Language-EXtended Indoor SLAM (LEXIS): A Versatile System for Real-time Visual Scene Understanding Authors Christina Kassab, Matias Mattamala, Lintong Zhang, Maurice Fallon 多功能和自适应语义理解将使自主系统能够理解周围环境并与之交互。现有的固定类别模型限制了室内移动和辅助自主系统的适应性。在这项工作中,我们介绍了 LEXIS,这是一种实时室内同步定位和地图 SLAM 系统,它利用大型语言模型法学硕士的开放词汇性质来创建场景理解和地点识别的统一方法。该方法首先使用视觉惯性里程计构建环境的拓扑 SLAM 图,并将对比语言图像预训练 CLIP 特征嵌入到图节点中。我们使用这种表示形式进行灵活的房间分类和分割,作为以房间为中心的位置识别的基础。这使得闭环搜索能够定向到语义相关的位置。我们提出的系统使用公共、模拟数据和现实世界数据进行评估,涵盖办公室和家庭环境。它成功地对具有不同布局和尺寸的房间进行分类,并且优于最先进的 SOTA。对于位置识别和轨迹估计任务,我们实现了与 SOTA 相同的性能,所有这些任务也都使用相同的预训练模型。 |
Near Real-Time Position Tracking for Robot-Guided Evacuation Authors Mollik Nayyar, Alan Wagner 在建筑物疏散过程中,引导机器人可以快速准确地跟踪人类疏散人员,以提高疏散的有效性 1, 2 。本文介绍了一种为疏散机器人量身定制的近实时人体位置跟踪解决方案。使用姿势检测器,我们的系统首先近乎实时地识别相机帧中的人体关节,然后通过简单的校准过程将这些像素的位置转换为现实世界坐标。我们在室内实验室环境中对该系统进行了多次试验,结果表明,与地面实况相比,该系统可以达到 0.55 米的精度。该系统还可以实现平均每秒 3 帧的 FPS,这足以满足我们对机器人引导人员疏散的研究。 |
When Prolog meets generative models: a new approach for managing knowledge and planning in robotic applications Authors Enrico Saccon, Ahmet Tikna, Davide De Martini, Edoardo Lamon, Marco Roveri, Luigi Palopoli Department of Information Engineering and Computer Science, Universit di Trento, Trento, Italy 在本文中,我们提出了一种基于Prolog语言的面向机器人的知识管理系统。我们的框架取决于知识库的特殊组织,它能够:1.使用基于大型语言模型的半自动化程序从自然语言文本中高效填充,2.通过一系列转换为多机器人系统无扰生成时间并行计划, 3. 将计划自动翻译为可执行的形式主义行为树。 |
Modeling Evacuee Behavior for Robot-Guided Emergency Evacuation Authors Mollik Nayyar, Alan Wagner 本文考虑了在机器人引导的紧急疏散过程中开发合适的人类疏散人员行为模型的问题。我们描述了我们最近开发的撤离人员行为模型的研究以及这些模型的未来潜在用途。 |
Low-Cost Exoskeletons for Learning Whole-Arm Manipulation in the Wild Authors Hongjie Fang, Hao Shu Fang, Yiming Wang, Jieji Ren, Jingjing Chen, Ruo Zhang, Weiming Wang, Cewu Lu 虽然人类可以使用手臂以外的部分进行收集和支撑等操作,但机器人是否能够有效地学习和执行相同类型的操作仍然相对未经探索。由于这些操作需要关节水平控制来调节机器人的完整姿势,因此我们开发了 AirExo,这是一种低成本、适应性强的便携式双臂外骨骼,用于远程操作和演示采集。由于收集远程操作数据既昂贵又耗时,我们进一步利用 AirExo 在野外大规模演示中收集廉价数据。在我们的野外学习框架下,我们表明,只需 3 分钟的远程操作演示,再加上 AirExo 收集的多样化和广泛的野外数据,机器人就可以学习一种与远程操作中学到的策略相当甚至更好的策略。示威持续20多分钟。实验表明,我们的方法使模型能够在任务的各个阶段学习更通用、更稳健的策略,即使存在干扰,也能提高任务完成的成功率。 |
Integration of Large Language Models within Cognitive Architectures for Autonomous Robots Authors Miguel . Gonz lez Santamarta, Francisco J. Rodr guez Lera, ngel Manuel Guerrero Higueras, Vicente Matell n Olivera 最近,大型语言模型法学硕士的使用量有所增加,这不仅是因为其准确性的显着提高,还因为使用了量化功能,可以在没有强烈硬件要求的情况下运行这些模型。结果,法学硕士数量激增。它意味着创建各种各样具有不同能力的法学硕士。通过这种方式,本文提出将法学硕士集成到自主机器人的认知架构中。具体来说,我们介绍了 llama ros 工具的设计、开发和部署,该工具允许在基于 ROS 2 的环境中轻松使用和集成 LLM,然后与最先进的认知架构 MERLIN2 集成,以更新基于 PDDL 的规划器系统。 |
Virtual Reality as a Tool for Studying Diversity and Inclusion in Human-Robot Interaction: Advantages and Challenges Authors Andr Helgert, Sabrina C. Eimler, Carolin Stra mann 本文探讨了虚拟现实 VR 作为研究人类机器人交互 HRI 背景下的多样性和包容性特征的研究工具的潜力。讨论了在 HRI 中使用 VR 的一些独特优势,例如可控环境、操纵与机器人和人机交互相关的变量的可能性、机器人和环境设计的灵活性以及相关的先进测量方法,例如机器人和人机交互。眼球追踪和生理数据。同时,描述了在 HRI 中研究多样性和包容性的挑战,特别是在开发 VR 环境时的可访问性、网络病和偏见方面。 |
Interaction-Aware Sampling-Based MPC with Learned Local Goal Predictions Authors Walter Jansma, Elia Trevisan, lvaro Serra G mez, Javier Alonso Mora 在紧凑、交互丰富且混合的人类机器人环境中,自主机器人的运动规划具有挑战性。最先进的方法通常将预测和规划分开, |