AI视野·今日CS.Robotics 机器人学论文速览
Tue, 10 Oct 2023
Totally 54 papers
👉上期速览✈更多精彩请移步主页
Daily Robotics Papers
On Multi-Fidelity Impedance Tuning for Human-Robot Cooperative Manipulation Authors Ethan Lau, Vaibhav Srivastava, Shaunak D. Bopardikar 我们研究了当先前实验的输入输出数据可用时,如何设计人机交互 HRI 系统。特别是,我们考虑如何在与新操作员的协作操作任务的辅助设计中选择最佳阻抗。由于个体之间的差异,最适合一位机器人操作员的设计参数可能不是另一位机器人操作员的最佳参数。然而,通过使用线性自回归 AR 1 高斯过程合并历史数据,可以加速搜索新算子的最佳参数。我们提出了一个优化人类机器人协作操作的框架,该框架仅需要输入输出数据。我们建立了 AR 1 模型如何改善后悔的界限,并数值模拟人类机器人协作操作任务以显示后悔的改善。 |
DTPP: Differentiable Joint Conditional Prediction and Cost Evaluation for Tree Policy Planning in Autonomous Driving Authors Zhiyu Huang, Peter Karkus, Boris Ivanovic, Yuxiao Chen, Marco Pavone, Chen Lv 运动预测和成本评估是自动驾驶汽车决策系统的重要组成部分。然而,现有的方法常常忽视成本学习的重要性,并将它们视为单独的模块。在本研究中,我们采用树形结构的策略规划器,并为自我条件预测和成本模型提出了一个可微的联合训练框架,从而直接提高了最终的规划性能。对于条件预测,我们引入了一个以查询为中心的 Transformer 模型,该模型执行高效的自我条件运动预测。对于规划成本,我们提出了一种具有潜在交互特征的可学习的上下文感知成本函数,促进可微联合学习。我们使用现实世界的 nuPlan 数据集及其相关的规划测试平台来验证我们提出的方法。我们的框架不仅符合最先进的规划方法,而且在规划质量方面优于其他基于学习的方法,同时在运行时方面运行效率更高。我们表明,联合训练比两个模块单独训练的性能明显更好。 |
A Learning-Based Framework for Safe Human-Robot Collaboration with Multiple Backup Control Barrier Functions Authors Neil C. Janwani, Ersin Da , Thomas Touma, Skylar X. Wei, Tamas G. Molnar, Joel W. Burdick 由于扭矩限制等驱动限制,确保复杂环境中的机器人安全是一项艰巨的任务。本文提出了一种安全关键控制框架,该框架利用多个备用控制器之间基于学习的切换来正式保证有界控制输入下的安全性,同时满足驾驶员意图。通过利用旨在维护安全和输入约束的备用控制器,备用控制屏障函数 BCBF 通过可行的二次程序 QP 构造隐式定义的控制不变性集。然而,BCBF 性能在很大程度上取决于所选备用控制器的设计和保守性,特别是在复杂(例如越野)条件下的人类驾驶车辆设置中。虽然使用多个备用控制器可以降低保守性,但确定何时切换是一个悬而未决的问题。因此,我们开发了一种广播方案,可以估计驾驶员意图并将 BCBF 与多种人机交互备份策略相集成。 LSTM 分类器使用来自机器人、人类和安全算法的数据输入来持续实时选择备用控制器。我们展示了我们的方法在双轨机器人避障场景中的有效性。 |
A Simple Open-Loop Baseline for Reinforcement Learning Locomotion Tasks Authors Antonin Raffin, Olivier Sigaud, Jens Kober, Alin Albu Sch ffer, Jo o Silv rio, Freek Stulp 为了寻找能够在运动任务上与深度强化学习竞争的最简单的基线,我们提出了一种受生物学启发的无模型开环策略。它利用先验知识并利用简单振荡器的优雅来生成周期性关节运动,在五种不同的运动环境中实现了可观的性能,其许多可调参数只是强化学习算法通常所需的数千个参数的一小部分。与 RL 方法不同,RL 方法在受到传感器噪声或故障时容易出现性能下降,而我们的开环振荡器由于不依赖传感器而表现出卓越的鲁棒性。 |
FeatSense -- A Feature-based Registration Algorithm with GPU-accelerated TSDF-Mapping Backend for NVIDIA Jetson Boards Authors Julian Gaal, Thomas Wiemann, Alexander Mock, Mario Porrmann 本文介绍了 FeatSense,这是一种用于高分辨率 LiDAR 的基于特征的 GPU 加速 SLAM 系统,与地图生成算法相结合,可在嵌入式硬件上实时生成大型截断符号距离场 TSDF。 FeatSense 使用 LiDAR 点云功能进行里程计估计和点云配准。注册的点云被集成到全局截断符号距离场 TSDF 表示中。 FeatSense 旨在在具有集成 GPU 加速器(例如 NVIDIA Jetson 板)的嵌入式系统上运行。在本文中,我们提出了一种实时的 TSDF SLAM 系统,专门为紧密耦合的 CPU GPU 系统量身定制。该实施在各种结构化和非结构化环境中进行评估,并根据现有参考数据集进行基准测试。本文的主要贡献是能够在 NVIDIA AGX Xavier 上以 10Hz 注册 Ouster OS1 128 LiDAR 的多达 128 条扫描线,同时与之前在相同功率预算下的工作相比,实现 TSDF 地图生成速度提高 100 倍 |
3D tomatoes' localisation with monocular cameras using histogram filters Authors Sandro Costa Magalh es, Filipe Neves dos Santos, Ant nio Paulo Moreira, Jorge Dias 执行农业任务,例如水果监测或收割,需要感知物体的空间位置。由于雷电干扰,RGB D 相机在开放环境下的使用受到限制。因此,在本研究中,我们使用直方图滤波器贝叶斯离散滤波器来估计番茄在番茄植株中的位置。研究了两种核滤波器:方核和高斯核。在有或没有高斯噪声和随机噪声的情况下,以及在实验室条件下的测试台上对所实现的算法进行了仿真。该算法在评估距离约为 0.5 m 的实验室条件下,模拟中的平均绝对误差低于 10 mm,测试台中的平均绝对误差低于 20 mm。 |
STOPNet: Multiview-based 6-DoF Suction Detection for Transparent Objects on Production Lines Authors Yuxuan Kuang, Qin Han, Danshi Li, Qiyu Dai, Lian Ding, Dong Sun, Hanlin Zhao, He Wang 在这项工作中,我们提出了 STOPNet,一个用于生产线上 6 DoF 物体吸附检测的框架,重点关注但不限于透明物体,这是机器人系统和现代工业中一个重要且具有挑战性的问题。由于深度相机在感知其几何形状方面的缺陷,当前需要深度输入的方法无法处理透明物体,而我们提出了一种新颖的框架,基于多视图立体,仅依赖于 RGB 输入来重建生产线上的场景。与现有的工作相比,我们的方法不仅重建了整个 3D 场景,以便实时获得高质量的 6 DoF 吸力姿势,而且还推广到新的环境、新的布置和新的物体,包括具有挑战性的透明物体,无论是在模拟还是在现实中。真实世界。 |
DecAP: Decaying Action Priors for Accelerated Learning of Torque-Based Legged Locomotion Policies Authors Shivam Sood, Ge Sun, Peizhuo Li, Guillaume Sartoretti 由于后者具有顺从性和鲁棒性,腿式机器人的最优控制已经经历了从基于位置的控制到基于扭矩的控制的范式转变。与此同时,社区还转向深度强化学习 DRL,将其作为直接学习复杂现实生活任务的运动策略的有前途的方法。然而,大多数端到端 DRL 方法仍然在位置空间中运行,主要是因为扭矩空间中的学习通常样本效率低下,并且不能始终收敛到自然步态。为了应对这些挑战,我们引入了 Decaying Action Priors DecAP,这是一种新颖的三阶段框架,用于学习和部署腿部运动的扭矩策略。在第一阶段,我们通过训练位置策略来生成我们自己的模仿数据,从而无需设计最佳控制器时需要专业知识。第二阶段结合了衰减行动先验,以加强对模仿奖励辅助的基于扭矩的策略的探索。我们表明,我们的方法始终优于单独的模仿学习,并且对于这些奖励的扩展具有显着的鲁棒性。最后,我们的第三阶段通过直接部署我们学习的扭矩以及来自我们训练的位置策略的低增益 PID 控制,促进安全模拟到真实的传输。 |
Reinforcement learning for freeform robot design Authors Muhan Li, David Matthews, Sam Kriegman 受到动物形态适应必要性的启发,越来越多的工作试图扩大机器人训练范围,以涵盖机器人设计的物理方面。然而,能够优化机器人 3D 形态的强化学习方法仅限于重新定向或调整预定静态拓扑属的肢体大小。在这里,我们展示了设计具有任意外部和内部结构的自由形式机器人的策略梯度。这是通过沉积或移除原子构建块束以形成更高水平的非参数宏观结构(例如附属物、器官和腔体)的操作来实现的。 |
Care3D: An Active 3D Object Detection Dataset of Real Robotic-Care Environments Authors Michael G. Adam, Sebastian Eger, Martin Piccolrovazzi, Maged Iskandar, Joern Vogel, Alexander Dietrich, Seongjien Bien, Jon Skerlj, Abdeldjallil Naceri, Eckehard Steinbach, Alin Albu Schaeffer, Sami Haddadin, Wolfram Burgard 随着卫生部门劳动力短缺的加剧,对辅助机器人的需求不断增长。然而,开发这些机器人所需的测试数据很少,特别是对于主动 3D 物体检测应用,根本不存在真实数据。这篇简短的论文通过引入这样一个带注释的真实环境数据集来反驳这一点。捕获的环境代表了机器人医疗保健研究领域已经使用的区域。 |
Collision Avoidance for Autonomous Surface Vessels using Novel Artificial Potential Fields Authors Aditya Kailas Jadhav, Anantha Raj Pandi, Abh |