【AI视野·今日Robot 机器人论文速览 第六十期】Mon, 23 Oct 2023

本文是AI视野下的今日CS.Robotics机器人学论文速览,介绍了2023年10月23日周一的相关情况,共有26篇论文,还提及上期速览,引导更多精彩移步主页。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI视野·今日CS.Robotics 机器人学论文速览
Mon, 23 Oct 2023
Totally 26 papers
👉上期速览更多精彩请移步主页

在这里插入图片描述

Daily Robotics Papers

A Review of Prospects and Opportunities in Disassembly with Human-Robot Collaboration
Authors Meng Lun Lee, Xiao Liang, Boyi Hu, Gulcan Onel, Sara Behdad, Minghui Zheng
产品拆卸在 EoU 终端产品的回收、再制造和再利用中发挥着至关重要的作用。然而,由于EoU产品的复杂性和多样性,当前的手动拆卸过程效率低下。虽然考虑到任务的复杂性,完全自动化拆卸在经济上不可行,但使用人类机器人协作 HRC 来增强拆卸操作具有潜力。 HRC 将人类的灵活性和解决问题的能力与机器人精确重复和处理不安全任务的能力结合起来。然而,技术、人力和再制造工作仍然存在众多挑战,需要全面的多学科研究来弥合关键差距。这些挑战促使作者对引入 HRC 进行拆卸相关的机遇和障碍进行了详细讨论。

Social Robot Mediator for Multiparty Interaction
Authors Manith Adikari, Angelo Cangelosi, Randy Gomez
充当调解人的社交机器人可以增强人类之间的互动,例如在教育和医疗保健等领域。一个特别有前途的研究领域是在多方环境中使用社交机器人调解器,这往往最适用于现实世界的场景。然而,针对多方交互的社交机器人中介的研究仍在不断涌现,并面临着众多挑战。本文通过重点介绍相关文献和一些持续存在的问题,概述了社交机器人和中介研究。还提出了结合相关心理学原理来开发社交机器人调解员的重要性。

Correspondence learning between morphologically different robots through task demonstrations
Authors Hakan Aktas, Yukie Nagai, Minoru Asada, Erhan Oztop, Emre Ugur
我们观察了各种各样的机器人的身体、传感器和执行器。考虑到技能组的共性,当考虑到机器人领域的多样性时,单独向每个不同的机器人教授每种技能是低效的且不可扩展的。如果我们能够了解不同机器人感觉运动空间之间的对应关系,我们就可以期望在一个机器人中学到的技能可以更直接、更容易地转移到其他机器人上。在本文中,我们提出了一种学习形态具有显着差异的机器人(具有关节控制的固定基机械手机器人和差动驱动移动机器人)之间对应关系的方法。为此,首先对这两种机器人进行了演示,以实现相同的任务。在学习相应策略的同时形成了共同的潜在表示。在这个初始学习阶段之后,对一个机器人执行新任务的观察足以生成与另一个机器人相关的潜在空间表示,以实现相同的任务。我们在一组实验中验证了我们的系统,其中学习了两个模拟机器人之间的对应关系 1 当机器人需要遵循相同的路径来完成相同的任务时, 2 当机器人需要遵循不同的轨迹来完成相同的任务时,以及3 当所考虑的机器人所需的感觉运动轨迹的复杂性不同时。

Quadrotor Dead Recooking with Multiple Inertial Sensors
Authors Dror Hurwitz, Itzik Klein
四旋翼飞行器广泛用于监视、测绘和交付。在多种情况下,四旋翼飞行器以纯惯性导航模式运行,导致导航解漂移。为了处理这种情况并限制导航漂移,四旋翼飞行器航位推算 QDR 方法需要使四旋翼飞行器沿周期性轨迹飞行。然后,使用基于模型或学习的方法可以估计四旋翼飞行器位置矢量。我们建议使用多个惯性测量单元MIMU来提高QDR方法的定位精度。推导并评估了在深度学习框架中利用 MIMU 数据的几种方法。

RL-X: A Deep Reinforcement Learning Library (not only) for RoboCup
Authors Nico Bohlinger, Klaus Dorer
本文介绍了新的深度强化学习 DRL 库 RL X 及其在 RoboCup 足球模拟 3D 联赛和经典 DRL 基准测试中的应用。 RL X 通过自包含的单目录算法提供了灵活且易于扩展的代码库。

A Human-Robot Mutual Learning System with Affect-Grounded Language Acquisition and Differential Outcomes Training
Authors Alva Markelius, Sofia Sj berg,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值