今日CS.CV 计算机视觉论文速览
Fri, 19 Apr 2019
Totally 80 papers
?上期速览✈更多精彩请移步主页
Interesting:
?Deep Network Resizing (DNR)基于深度特征重建来实现图像的缩放, (from 特拉维夫大学)
?Tex2Shape, 基于单张图像生成人体几何外形(from 布伦瑞克工业大学 德国TU9 马普研究所)
先将图像转换到UV空间的材质图,而后利用自编码器处理并保留高频特征,利用PatchGAN判别器来判别,并将生成的表面法向量和位移结合起来利用SMPL(A skinned multi-person linear model)模型进行渲染。(The UV-mapping unfolds the body surface onto a 2D image such that every pixel corresponds to a 3D point on the body surface.)
主要工作是将UV图(partial texture map)生成对应法向量与偏移的SMPL(detailed normal and vector displacement maps),将图像生成3D外形转换为了图像到图像的迁移任务:
仿真中训练并在真实中得到了较好的结果:
?CornerNet-Lite, 基于关键点的目标检测,利用了CornerNet的两大高效优势,包括Saccade注意力机制用于减小不必要像素的计算、Squeeze引入了更为紧致的后端网络。不仅提高了六倍速度并得到了AP0.1的特征。(from 普林斯顿 Vision & Learning Lab
)
先预测一系列可能有物体的区域,并裁剪原图用于检测目标:
一些检测结果:
code:https://github.com/princeton-vl/CornerNet-Lite
?基于光学方法的深度估计帮助估计绝对深度, 端到端的结合了光学和图像处理过程用于单目深度估计问题,并利用编码的离焦模糊来作为辅助深度信息用于深度估计。研究发现优化的自由曲面设计得到结果较好,而色差也会带来相同的效果。研究建立了物理原型并验证了色差促进深度估计的效果。(from 斯坦福 )
点扩散函数的建模:
dataset:NYU Depth v2 and KITTI,计算成像
?闵可夫斯基卷积神经网络处理4D空时卷积, 利用稀疏张量来进行卷积,并给出了一个处理稀疏张量自动差分的库。(from 斯坦福)
不同的空时核
code:https://github.com/StanfordVL/MinkowskiEngine
?MLB半球比赛运动受伤预测检测, (from 印第安纳大学)
?人脸去模糊, 通过一系列预训练的正交点扩散函数来表示点扩散函数,同时用一系列预训练的正交人脸组合来表示清晰的人脸。(from )
点扩散函数及线性组合:
模糊图像与对应的模糊核:
dataset:
Facial Recognition Technology (FERET) Database1http://www.itl.nist.gov/iad/humanid/feret/feret_master.html
Yale Face Database B2http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
CMU Pose, Illumination, and Expression (PIE) database3https://www.ri.cmu.edu/research project detail.html?project_id=418&
menu_id=261
Face Recognition Grand Challenge (FRGC) Database version 2.04http://www.nist.gov/itl/iad/ig/frgc.cfm
?提高中心编码用于细胞检测, 将原始的点label编码成更容易学习的形式,便捷性和鲁棒性,为了分辨出相邻区域,提出了五种编码机制和四种细胞在两种网络上实验。(from 弗吉尼亚大学)
模型的编码,并与高斯和矩形编码作对比:
?基于强度控制的实时风格迁移, 提出了可以直接连续控制风格化强度的模型。(from 莫斯科罗蒙索夫大学 )
在残差输出位置加入了强度控制单元:
控制风格强度的结果:
?基于注意力机制的多任务单任务学习, 通过依赖于任务的特征适应,是网络可以充分利用任务相关特征,并突出任务相关的梯度。(from ethz)
实现了边缘检测、分割、法向量估计和深度估计等。
code:http://www.vision.ee.ethz.ch/~kmaninis/astmt/
?少儿不宜卡通片的识别, (from RECOD Lab., Institute of Computing, University of Campinas)
Elsagate卡通和架构图
评测方法:GoogLeNet [19], SqueezeNet [20], MobileNetV2 [21], and NASNet [22]
Elsagate dataset: https://github.com/akariueda/DLAforElsagate
?基于近红外相机的天然气泄漏检测, (from 斯坦福)
?由照片估计相机参数和拍摄相机, (from University of Campinas)
不同相机抹胸识别问题建模:
dataset:http://www.recod.ic.unicamp.br/~filipe/dataset/
Classifiers:http://www.ic.unicamp.br/~ra142698/oscmi-results.html
?路面开裂检测, 基于神经网络实现了99.92%的准确率。首先分类是否存在缺陷,随后利用双边滤波去噪,最后利用自适应阈值分割(from 香港科技)
code:https://github.com/ruirangerfan/road_crack_detection_net
dataset:http://dx.doi.org/10.17632/5y9wdsg2zt.1
?COncrete DEfect BRidge IMage dataset (CODEBRIM)混泥土缺陷检测数据集, 多目标分类任务。基于”efficient neural architecture search” 和MetaQNN来搜索神经网络实现了任务。(ENAS) (from Goethe University )
?皮肤癌数据集的bias, (from Institute of Computing)
检测结果:
src:https://www.cancer.net/cancer-types/melanoma/statistics
code:https://github.com/alceubissoto/deconstructing-bias-skin-lesion
dataset:http://derm.cs.sfu.ca/Welcome.html
Daily Computer Vision Papers
Attentive Single-Tasking of Multiple Tasks Authors Kevis Kokitsi Maninis, Ilija Radosavovic, Iasonas Kokkinos 在这项工作中,我们通过考虑网络是在多个任务上进行训练,但是一次执行一项任务来解决通用网络中的任务干扰,我们将这种方法称为单任务多任务。因此,网络通过任务相关的特征适配或任务关注来修改其行为。这使网络能够强调适应任务的功能,同时避开不相关的功能。我们通过强制通过对抗性训练在统计上无法区分任务梯度来进一步减少任务干扰,确保服务于所有任务的公共骨干架构不受任何特定任务梯度的支配。三个多任务密集标记问题的结果一致表明,在保持甚至提高性能的同时,参数数量大大减少,并且在计算和多任务准确性之间平滑折衷。我们提供系统代码和预先训练的模型 |
Early Detection of Injuries in MLB Pitchers from Video Authors AJ Piergiovanni, Michael S. Ryoo 受伤是运动中的主要成本。球队每年花费数百万美元用于受伤和无法比赛的球员,导致比赛输球,球迷兴趣减少以及替补球员的额外工资。现代卷积神经网络已成功应用于许多视频识别任务。在本文中,我们介绍了MLB投手中伤害检测预测的问题,并通过实验评估这种卷积模型仅从视频数据中检测和预测球场伤害的能力。我们对2017年季节受伤的20名不同投手的电视转播MLB视频的大型数据集进行了实验。我们通过实验评估模型在每个投手上的表现,它对新投手的概括性,它对各种伤害的表现如何,以及它如何及早预测或发现伤害。 |
Combating the Elsagate phenomenon: Deep learning architectures for disturbing cartoons Authors Akari Ishikawa, Edson Bollis, Sandra Avila 观看漫画对儿童的智力,社交和情感发展非常有用。然而,今天最流行的视频分享平台提供了许多带有Elsagate内容的视频。 Elsagate是一种在令人不安的环境中描绘童年人物的现象,例如血腥,厕所幽默,饮酒,偷窃。即使这种威胁很容易为儿童所用,文献中也没有解决问题的工作。作为第一个探讨漫画中令人不安的内容的人,我们从最新的色情检测文献开始,应用深度卷积神经网络结合视频的静态和运动信息。我们的解决方案与移动平台兼容,达到92.6的准确性。我们的目标不仅是引入第一个解决方案,还要围绕Elsagate进行讨论。 |
CornerNet-Lite: Efficient Keypoint Based Object Detection Authors Hei Law, Yun Teng, Olga Russakovsky, Jia Deng 基于关键点的方法是对象检测中相对较新的范例,消除了对锚箱的需求并提供了简化的检测框架。基于Keypoint的CornerNet在单级探测器中实现了最先进的精度。然而,这种准确性来自高处理成本。在这项工作中,我们解决了基于关键点的高效对象检测问题,并引入了CornerNet Lite。 CornerNet Lite是CornerNet CornerNet Saccade的两种有效变体的组合,它使用注意机制消除了对图像的所有像素进行彻底处理的需要,以及引入新的紧凑骨干架构的CornerNet Squeeze。这两个变体共同解决了有效物体检测中的两个关键用例,在不牺牲精度的情况下提高了效率,并提高了实时效率的准确性。 CornerNet Saccade适用于离线处理,在COCO上将CornerNet的效率提高6.0倍,AP的效率提高1.0。 CornerNet Squeeze适用于实时检测,提高了CornerNet Squeeze的流行实时检测器YOLOv3 34.4 AP的效率和准确度,相比于COCO上YOLOv3的39.0 AP,33.0 AP。这些贡献首次共同揭示了基于关键点的检测对于需要处理效率的应用的潜力。 |
No-Reference Quality Assessment of Contrast-Distorted Images using Contrast Enhancement Authors Jia Yan, Jie Li, Xin Fu 没有参考图像质量评估NR IQA旨在测量没有参考图像的图像质量。然而,NR IQA的当前研究忽 |