今日CS.CV 计算机视觉论文速览
Wed, 1 May 2019
Totally 40 papers
?上期速览✈更多精彩请移步主页
?Segmentations is All You Need,提出了一种无须锚点和非极大值抑制的目标检测方法,主要解决了复杂遮挡情况下召回率低的问题。研究人员提出了一种基于弱监督分割的多模态标记方法来实现更高的鲁棒性。利用bbox作为弱标记来得到鲁棒的检测表现,避免了超参数相关的锚框和非极大值抑制。(from 牛津)
分割标记的成本是bbox成本的15倍以上,研究人员提出了基于bbox使用分割的方法来实现多模态标记,只需要一个模型即可处理多种情况。
多模态数据:
可以检测小到5050,1515像素的小物体(矢量场的帮助下)。
多模态标记方法的细节以及向量场:
dataset:
野外人脸WIDER Face
钢筋检测数据集, github
pytorch faster rcnn
?RefineContourNet进行目标轮廓及边缘检测, 利用了Resnet抽取高层次特征并用于边缘检测,并融合了高、中、低特征,通过一定的方式层层融合。(from Helmut Schmidt University)
边缘检测的过程:
残差卷积单元、多分辨率融合、链式残差池化单元的结构:
一些得到的结果:
dataset:BSDS500,PASCAL VOC 2012 dataset
?自动字形生成, 提出了基于cnn模型的字形生成架构,首先利用协作策略训练合作笔画精炼技术来恢复缺失笔画部分;同时利用在线缩放增强技术来充分复用内容以减小训练集大小;并使得字形产生自适应的预变形、标准化和配准,只利用了750对字符进行训练。(from 上海交大)
网络具体架构以及比较方法需要数据集大小如下:
一些生成的记结果:
?SurfelWarp高效的单视角非刚体动态三维重建, 提出了一种基于深度图流的非刚体实时重建方法,而无需维持体素数据结构,不需要模板和先验模型,同时避免了较大内存和计算量的使用。同时使用曲面元素表示的集合可以高效的跟踪形态学变换并实现基于深度观测的实时重建。(from MIT)
系统流程图:
一些动态重建结果:
web:https://sites.google.com/view/surfelwarp/home
?基于深度学习利用Sentinel-2多光谱卫星图像估计森林覆盖植被的高度, 其中基准数据来自于激光雷达或者林木高度模型。(from ETHz)
?公园里自动捡垃圾的机器人, (from 北航)
Daily Computer Vision Papers
Comparative evaluation of 2D feature correspondence selection algorithms Authors Chen Zhao, Jiaqi Yang, Yang Xiao, Zhiguo Cao 旨在从原始特征匹配中寻找正确的特征对应关系的对应选择对于许多基于特征匹配的任务是关键的。已经呈现了各种2D图像对应选择算法,其具有数十年的进步。遗憾的是,由于缺乏深入评估,开发人员很难在给定特定应用的情况下选择合适的算法。本文通过评估八种二维对应选择算法(从经典方法到四种标准数据集中的最新方法)来填补这一空白。实验数据集的多样性带来各种麻烦,包括缩放,旋转,模糊,视点变化,JPEG压缩,光变化,不同的渲染风格和多结构,以进行全面测试。为了进一步创建初始匹配的不同分布,还考虑了一组检测器和描述符的组合。我们从四个方面测量对应选择算法的质量,即精度,召回,F测量和效率。根据评估结果,汇总了所有考虑的算法的当前优点和局限性,可以将其视为以下开发人员的用户指南。 |
The Level Weighted Structural Similarity Loss: A Step Away from the MSE Authors Yingjing Lu 均方误差MSE在应用于深度生成模型(如自动编码器)模型重建损失时已显示出其强度。然而,特别是在图像领域,MSE的局限性很明显,它假定像素独立并忽略样本的空间关系。这与使用卷积层提取空间相关特征的自动编码器的大多数架构相矛盾。我们基于结构相似性度量SSIM,并为卷积自动编码器提出新的级别加权结构相似性LWSSIM损失。对各种自动编码器变体的常见数据集的实验表明,我们的损失能够超越MSE损失和香草SSIM损失。我们还提供了在标准SSIM丢失失败的情况下我们的模型能够成功的原因。 |
Structured Prediction using cGANs with Fusion Discriminator Authors Faisal Mahmood, Wenhao Xu, Nicholas J. Durr, Jeremiah W. Johnson, Alan Yuille 我们提出了融合鉴别器,一种统一的框架,用于将条件信息合并到生成对抗网络GAN中,用于各种不同的结构化预测任务,包括图像合成,语义分割和深度估计。与常用的卷积神经网络条件马尔可夫随机场CNN CRF模型非常相似,所提出的方法能够在模型中实施更高阶的一致性,但不限于非常特定的一类电势。该方法在概念上简单而灵活,我们的实验结果证明了对几种不同的结构化预测任务的改进。 |