今日CS.CV 计算机视觉论文速览
Thu, 30 May 2019
Totally 41 papers
?上期速览✈更多精彩请移步主页
Interesting:
?利用多通道连续性规范实现图像迁移, 对于图像迁移现有的方法主要分为辨别生成图像与真实图像间的损失,或者真实与重建图像检测重建损失来进行,新方法提出了一种多通道的连续损失,同时测评了直接迁移和间接迁移(引入了辅助域)来规范训练。在人脸迁移、图像风格迁移、去雨滴去噪中取得了很多好的效果。多通道连续损失可以充分利用多个域信息来正则化训练过程,未来可以做三个甚至更多的通道和随机辅助域。(from 中科大)
增加多路连续损失的模型:
一些结果:
?基于单RGBD实现新视角人体三维渲染数据生成, 将先前看到的“标定”图像应用于新视角渲染的外插。实现了端到端的新视角生成。(from Google)
系统中包含的四个模块,分别是渲染、位置检测,标题图像选择器、标定图像仿射变换、自然融合
?NPTC-net用于点云的窄带并行输运CNN, 在流型结构的点云上设计合适的卷积结构可以将最近CNN的优点应用于点云的分析处理上。但主要的挑战来自于设计合适的扫描滤波器来反映出点云的几何特征。在这篇论文中研究人员采用了并行输运理论,并给予三角化的方法提出了BPTC,利用特定的体素链接来进行点云数据,并基于NPTC实现了网络记性点云分类和分割。主要的特征在与将核的定义转移到正切面上。(from 北大)
一个实现的架构:
点云中的特征可视化,黄色是激活较高的部分:
?GraphCNN denoiser基于图卷积的图像去噪, 基于卷积操作的去噪方法局限于局部特征,研究人员提出了图卷积方法来探索局域与非局域特征,在特征空间中动态构建领域信息,并检测特征图间的隐关系。(from Politecnico di Torino, Italy)
下图展示了网络的架构,其中c为2D卷积,R为LeakReLU,GC为图卷积NLG为(特征空间中最邻近领域)非局域图构建。BN为批归一化。
一些图像超分辨的结果:
dataset:BSD500 dataset
?学习CNN中的非线性NLCNN, 研究人员提出了在卷积网络中实现非线性,不仅用于数据增强过程,同时也应用在了指数操作的非线性卷积上。在时间序列分析中实现了较好的效果。(from South Westfalia University of Applied Science Soest, Germany )
一些非线性操作:
非线性卷积的模型架构:
ref: http://web.mit.edu/braatzgroup/links.html
Tennessee Eastman Problem 模拟数据
?利用Octave卷积稳定GANs, 在卷积频域分解的启发下研究人员提出了稳定GANs训练减小模型崩溃风险的机制,通过将高频与低频的部分进行增量式的分离,并(更新低频的权重部分。这种方法使得GANs首先学习到了低频的粗糙部分随后再学习精细部分。这种方法与现有方法独立且互补。(from 夫琅禾费研究所ITWM, Germany)
显示了不同比重的低频与高频参数
稳定的训练过程:
?基于原始数据的自然图像超分辨算法, 提出了一种新方法通过模型数码相机的成像过程用于生成训练数据,生成的超分辨图像更为锐利,随后基于双卷积模型探索了原始图像的辐照信息来恢复更多的细节。最后提出了空间变分颜色转换来实现更有效的颜色纠正,解决了模型输入的真实训练数据缺失和信息丢失。(from SenseTime Research)
典型的影像信号处理过程ISP:
模型提出的架构如图所示,其中一个分支用于探索原始输入到高分辨线性测量的恢复、让细节和结构更清晰,第二个分支估计转换矩阵来对恢复颜色结果:
图像修复分支的细节,重建了高分辨率图像和颜色测量:
颜色修正分支的网络架构,针对每个像素的颜色修正矩阵:
一些结果:
包含raw的datsset:MIT-Adobe 5K dataset, V. Bychkovsky, S. Paris, E. Chan, and F. Durand. Learning photographic global tonal adjustment with a database of input/output image pairs. In CVPR, 2011. 2, 3, 5, 7
?SpArSe,用于微处理器MCU模型的稀疏架构搜索方法, 为了在资源极其受限的微处理器上部署CNN,研究人员提出了一种自动的通用CNN架构设计方法,可以用于很小的MCU上。这种稀疏架构搜索方法结合了神经架构搜索和剪枝,并在四个典型的IOT数据集上进行了先验模型学习。(from ARM ML Research,Princeton University)
典型的MCU计算和内存情况:
典型的微处理器模型大小:
优化后的模型大小和性能:
SOTA works: Bonsai [41], ProtoNN [32], Gradient Boosted Decision Tree Ensemble Pruning [22], kNN, and radial basis function support vector machine (SVM).
dataset: MNIST, CIRFA10, 自然字符识别数据集Chars74k dataset,CUReT反射和纹理数据集,多种纹理数据集:https://qixianbiao.github.io/Texture.html
?纹理卷积网络用于热电管道内部腐蚀分类检测, 这个网络包含两层卷积和一层能量层,用于从最后一层卷积中pooling出特征图。(from Technische Hochschule Ingolstadt)
基于滑动窗口法对于图像片进行分类:
正常、腐蚀、加速腐蚀的样本:
ref:T-CNN proposed by Andrearczyk and Whelan [8]